generate normalized discrete values for feature engineering - python-3.x

There is a dataframe, with one columns store the discrete values, shown as follows. I would like to create another column storing the normalized values. For instance, for 4050, the corresponding entry will be 4. Are there any efficient ways to do that instead of writing my own function? In Sklearn, are there any functions to generating normalized values?

Based on your comment:
there are around 20 different values, and the range is from 1000 to 9999, so I would like to use every 1000 as a category
This isn't really normalization in the strict sense of the word. However, to do that, you can easily use floor division (//):
df['new_column'] = df['values']//1000
For example:
>>> df
values
0 2021
1 8093
2 9870
3 4508
4 2645
5 1441
6 8888
7 8921
8 7292
9 8571
df['new_column'] = df['values']//1000
>>> df
values new_column
0 2021 2
1 8093 8
2 9870 9
3 4508 4
4 2645 2
5 1441 1
6 8888 8
7 8921 8
8 7292 7
9 8571 8

Related

For and if loop combination takes lot of time in Pandas (Data manipulation)

I have two datasets, each about half a million observations. I am writing the below code and it seems the code never seems to stop executing. I would like to know if there is a better way of doing it. Appreciate inputs.
Below are sample formats of my dataframes. Both dataframes share a set of 'sid' values , meaning all the 'sid' values in 'df2' will have a match in 'df1' 'sid' values. The 'tid' values and consequently the 'rid' values (which are a combination of 'sid' and 'tid' values) may not appear in both sets.
The task is simple. I would like to create the 'tv' column in df2. Wherever the 'rid' in df2 matches with the 'rid' in 'df1', the 'tv' column in df2 takes the corresponding 'tv' value from df1. If it does not match, the 'tv' value in 'df2' will be the median 'tv' value for the matching 'sid' subset in 'df1'.
In fact my original task includes creating a few more similar columns like 'tv' in df2 (based on their values in 'df1' ; these columns exist in 'df1').
I believe as my code contains for loop combined with if else statement and multiple value assignment statements, it is taking forever to execute. Appreciate any inputs.
df1
sid tid rid tv
0 0 0 0-0 9
1 0 1 0-1 8
2 0 3 0-3 4
3 1 5 1-5 2
4 1 7 1-7 3
5 1 9 1-9 14
6 1 10 1-10 24
7 1 11 1-11 13
8 2 14 2-14 2
9 2 16 2-16 5
10 3 17 3-17 6
11 3 18 3-18 8
12 3 20 3-20 5
13 3 21 3-21 11
14 4 23 4-23 6
df2
sid tid rid
0 0 0 0-0
1 0 2 0-2
2 1 3 1-3
3 1 6 1-6
4 1 9 1-9
5 2 10 2-10
6 2 12 2-12
7 3 1 3-1
8 3 15 3-15
9 3 1 3-1
10 4 19 4-19
11 4 22 4-22
rids = [rid.split('-') for rid in df1.rid]
for r in df2.rid:
s,t = r.split('-')
if [s,t] in rids:
df2.loc[df2.rid== r,'tv'] = df1.loc[df1.rid == r,'tv']
else:
df2.loc[df2.rid== r,'tv'] = df1.loc[df1.sid == int(s),'tv'].median()
The expected df2 shall be as follows:
sid tid rid tv
0 0 0 0-0 9.0
1 0 2 0-2 8.0
2 1 3 1-3 13.0
3 1 6 1-6 13.0
4 1 9 1-9 14.0
5 2 10 2-10 3.5
6 2 12 2-12 3.5
7 3 1 3-1 7.0
8 3 15 3-15 7.0
9 3 1 3-1 7.0
10 4 19 4-19 6.0
11 4 22 4-22 6.0
You can left merge on df2 with a subset(because you need only tv column you can also pass the df1 without any subset) of df1 on 'rid' then calculate median and fill values:
out=df2.merge(df1[['rid','tv']],on='rid',how='left')
out['tv']=out['tv_y'].fillna(out['sid'].map(df1.groupby('sid')['tv'].median()))
out= out.drop(['tv_x','tid_y','tv_y'], axis=1)
out = out.rename(columns = {'tid_x': 'tid'})
out
OR
Since you said that:
all the 'sid' values in 'df2' will have a match in 'df1' 'sid' values
So you can also left merge them on ['sid','rid'] and then fillna() value of tv with the median of df1 'tv' column by mapping values using map() method:
out=df2.merge(df1,on=['sid','rid'],how='left')
out['tv']=out['tv_y'].fillna(out['sid'].map(df1.groupby('sid')['tv'].median()))
out= out.drop(['tv_x','tv_y'], axis=1)
out
output of out:
sid tid rid tv
0 0 0 0-0 9.0
1 0 2 0-2 8.0
2 1 3 1-3 13.0
3 1 6 1-6 13.0
4 1 9 1-9 14.0
5 2 10 2-10 3.5
6 2 12 2-12 3.5
7 3 1 3-1 7.0
8 3 15 3-15 7.0
9 3 1 3-1 7.0
10 4 19 4-19 6.0
11 4 22 4-22 6.0
Here is a suggestion without any loops, based on dictionaries:
matching_values = dict(zip(df1['rid'][df1['rid'].isin(df2['rid'])], df1['tv'][df1['rid'].isin(df2['rid'])]))
df2[df2['rid'].isin(df1['rid'])]['tv'] = df2[df2['rid'].isin(df1['rid'])]['rid']
df2[df2['rid'].isin(df1['rid'])]['tv'].replace(matching_values)
median_values = df2[(~df2['rid'].isin(df1['rid']) & (df2['sid'].isin(df1['sid'])].groupby('sid')['tv'].median().to_dict()
df2[(~df2['rid'].isin(df1['rid']) & (df2['sid'].isin(df1['sid'])]['tv'] = df2[(~df2['rid'].isin(df1['rid']) & (df2['sid'].isin(df1['sid'])]['sid']
df2[(~df2['rid'].isin(df1['rid']) & (df2['sid'].isin(df1['sid'])]['tv'].replace(median_values)
This should do the trick. The logic here is that we first create a dictionary, in which the "rid and "sid" values are the keys and the median and matching "tv" values are the dictionary values. Next, we replace the "tv" values in df2 with the rid and sid keys, respectively, (because they are the dictionary keys) which can thus easily be replaced by the correct tv values by calling .replace().
Don't use for loops in pandas, that is known to be slow. That way you don't get to benefit from all the internal optimizations that have been made.
Try to use the split-apply-combine pattern:
split df1 into sid to calculate the median: df1.groupby('sid')['tv'].median()
join df2 on df1: df2.join(df1.set_index('rid'), on='rid')
fill the NaN values with the median calculated in step 1.
(Haven't tested the code).

compare two data frames and update value in one data frame by comparing another data frame value

I have two data frames. Examples:
df1:
A B C
5 7 6
8 1 1
1 0 7
3 4 9
5 7 4
9 2 0
df2:
A B C
3 2 1
6 5 7
9 7 9
1 1 2
6 4 5
0 8 6
Both data frames have same index.
What I want is , wherever df1's value is less than 5,
I want to update df2's value to 0, else keep it same.
I tried the following code:
df2[df1<5]=0
but when I am printing df2, its showing same values as original df2.
I know I am missing something really simple.
Please help me.
Thank you.

Pandas DataFrame: how do we keep columns based on the index name?

I seem to run into some python or enumerate bugs that I am not quite sure how to fix it (See here for more details).
Long story short, I desire to see multiple data sets that has a column name of 0,4,6,8,10,12,14.
0 4 6 8 10 12
1 2 5 4 2 1
5 3 0 1 5 10
....
But my current data looks like the following
0 4 2 6 8 10 12
1 2 5 4 2 1
5 3 0 1 5 10
....
Therefore, I would like to add a code that keeps columns based on the index number (including only 0,4,6,8,10,12).
Is there a pandas function that can help with this?

Create a frequency diagram using a dataframe in Pandas (Python3)

I currently have a list of the number of items and their frequency stored in a data frame called transactioncount_freq.
Item Frequency
0 1 3474
1 2 2964
2 3 1532
3 4 937
4 5 360
5 6 168
6 7 57
7 8 25
8 9 5
9 10 5
10 11 3
11 12 1
How would I make a bar chart using the item values as the x axis and the frequency values as the y axis using pandas and matplotlib.pyplot?
You can plot it easily like this
transactioncount_freq.plot(x='Item', y='Frequency', kind='bar')

Variable string formatting in python 3

Input is a number, e.g. 9 and I want to print decimal, octal, hex and binary value from 1 to 9 like:
1 1 1 1
2 2 2 10
3 3 3 11
4 4 4 100
5 5 5 101
6 6 6 110
7 7 7 111
8 10 8 1000
9 11 9 1001
How can I achieve this in python3 using syntax like
dm, oc, hx, bn = len(str(9)), len(bin(9)[2:]), ...
print("{:dm%d} {:oc%s}" % (i, oct(i[2:]))
I mean if number is 999 so I want decimal 10 to be printed like ' 10' and binary equivalent of 999 is 1111100111 so I want 10 like ' 1010'.
You can use str.format() and its mini-language to do the whole thing for you:
for i in range(1, 10):
print("{v} {v:>6o} {v:>6x} {v:>6b}".format(v=i))
Which will print:
1 1 1 1
2 2 2 10
3 3 3 11
4 4 4 100
5 5 5 101
6 6 6 110
7 7 7 111
8 10 8 1000
9 11 9 1001
UPDATE: To define field 'widths' in a variable you can use a format-within-format structure:
w = 5 # field width, i.e. offset to the right for all octal/hex/binary values
for i in range(1, 10):
print("{v} {v:>{w}o} {v:>{w}x} {v:>{w}b}".format(v=i, w=w))
Or define a different width variable for each field type if you want them non-uniformly spaced.
Btw. since you've tagged your question with python-3.x, if you're using Python 3.6 or newer, you can use Literal String Interpolation to simplify it even more:
w = 5 # field width, i.e. offset to the right for all octal/hex/binary values
for v in range(1, 10):
print(f"{v} {v:>{w}o} {v:>{w}x} {v:>{w}b}")

Resources