Custom kernel isn't printing on the screen correctly - string

I'm having trouble getting strings to print on my custom kernel. I've been following a tutorial on github. So far, I can only print strings that are 5 characters or less, and can't directly pass a string as a parameter.
kernel.c
#include "../drivers/screen.h"
void main() {
clear_screen();
// This line does NOT work.
kprint_at("X", 10, 10);
// This line DOES work
char msg[] = "X";
kprint_at(msg, 10, 10);
// This line does NOT work
char msg[] = "123456"; // Will only work for strings less than 6 characters.
kprint_at(msg, 10, 10);
}
screen.c
void kprint_at(char* message, int col, int row) {
int offset;
if (col >= 0 && row >= 0) offset = get_offset(col, row);
else {
offset = get_cursor_offset();
row = get_offset_row(offset);
col = get_offset_col(offset);
}
int i = 0;
while (message[i] != 0) {
offset = print_char(message[i++], col, row, WHITE_ON_BLACK);
row = get_offset_row(offset);
col = get_offset_col(offset);
}
}
int print_char(char c, int col, int row, char attr) {
unsigned char* vidmem = (unsigned char*) VIDEO_ADDRESS;
if (!attr) attr = WHITE_ON_BLACK;
if (col >= MAX_COLS || row >= MAX_ROWS) {
vidmem[2*(MAX_COLS)*(MAX_ROWS)-2] = 'E';
vidmem[2*(MAX_COLS)*(MAX_ROWS(-1] = RED_ON_WHITE;
return get_offset(col, row);
}
int offset;
if (col >= 0 && row >= 0) offset = get_offset(col, row);
else offset = get_cursor_offset();
if (c == '\n') {
row = get_offset_row(offset);
offset = get_offset(0, row+1);
} else {
vidmem[offset] = c;
vidmem[offset+1] = attr;
offset += 2;
}
set_cursor_offset(offset);
return offset;
}
If i set the row or col to beyond the width or height of the screen, I do get a red E at the bottom right corner, so I know that's working properly. Also, if I set the word to start near the end of the screen, it continues on the next line. It just won't let me input the string directly into the kprint_at function, and won't let me use any strings greater than 5 characters. Any ideas on whats going on?
I am using c language, with assembly. I'm also using a 64-bit linux system, but I'm running my kernel in 32-bit protected mode. Using a gcc cross compiler (i386-elf-gcc).

Related

Palindrome operations on a string

You are given a string S initially and some Q queries. For each query you will have 2 integers L and R. For each query, you have to perform the following operations:
Arrange the letters from L to R inclusive to make a Palindrome. If you can form many such palindromes, then take the one that is lexicographically minimum. Ignore the query if no palindrome is possible on rearranging the letters.
You have to find the final string after all the queries.
Constraints:
1 <= length(S) <= 10^5
1 <= Q <= 10^5
1<= L <= R <= length(S)
Sample Input :
4
mmcs 1
1 3
Sample Output:
mcms
Explanation:
The initial string is mmcs, there is 1 query which asks to make a palindrome from 1 3, so the palindrome will be mcm. Therefore the string will mcms.
If each query takes O(N) time, the overall time complexity would be O(NQ) which will give TLE. So each query should take around O(logn) time. But I am not able to think of anything which will solve this question. I think since we only need to find the final string rather than what every query result into, I guess there must be some other way to approach this question. Can anybody help me?
We can solve this problem using Lazy Segment Tree with range updates.
We will make Segment Tree for each character , so there will be a total of 26 segment trees.
In each node of segment tree we will store the frequency of that character over the range of that node and also keep a track of whether to update that range or not.
So for each query do the following ->
We are given a range L to R
So first we will find frequency of each character over L to R (this will take O(26*log(n)) time )
Now from above frequencies count number of characters who have odd frequency.
If count > 1 , we cannot form palindrome, otherwise we can form palindrome
If we can form palindrome then,first we will assign 0 over L to R for each character in Segment Tree and then we will start from smallest character and assign it over (L,L+count/2-1) and (R-count/2+1,R) and then update L += count/2 and R -= count/2
So the time complexity of each query is O(26log(n)) and for building Segment Tree time complexity is O(nlog(n)) so overall time complexity is O(nlogn + q26logn).
For a better understanding please see my code,
#include <bits/stdc++.h>
using namespace std;
#define enl '\n'
#define int long long
#define sz(s) (int)s.size()
#define all(v) (v).begin(),(v).end()
#define input(vec) for (auto &el : vec) cin >> el;
#define print(vec) for (auto &el : vec) cout << el << " "; cout << "\n";
const int mod = 1e9+7;
const int inf = 1e18;
struct SegTree {
vector<pair<bool,int>>lazy;
vector<int>cnt;
SegTree () {}
SegTree(int n) {
lazy.assign(4*n,{false,0});
cnt.assign(4*n,0);
}
int query(int l,int r,int st,int en,int node) {
int mid = (st+en)/2;
if(st!=en and lazy[node].first) {
if(lazy[node].second) {
cnt[2*node] = mid - st + 1;
cnt[2*node+1] = en - mid;
}
else {
cnt[2*node] = cnt[2*node+1] = 0;
}
lazy[2*node] = lazy[2*node+1] = lazy[node];
lazy[node] = {false,0};
}
if(st>r or en<l) return 0;
if(st>=l and en<=r) return cnt[node];
return query(l,r,st,mid,2*node) + query(l,r,mid+1,en,2*node+1);
}
void update(int l,int r,int val,int st,int en,int node) {
int mid = (st+en)/2;
if(st!=en and lazy[node].first) {
if(lazy[node].second) {
cnt[2*node] = mid - st + 1;
cnt[2*node+1] = en - mid;
}
else {
cnt[2*node] = cnt[2*node+1] = 0;
}
lazy[2*node] = lazy[2*node+1] = lazy[node];
lazy[node] = {false,0};
}
if(st>r or en<l) return;
if(st>=l and en<=r) {
cnt[node] = (en - st + 1)*val;
lazy[node] = {true,val};
return;
}
update(l,r,val,st,mid,2*node);
update(l,r,val,mid+1,en,2*node+1);
cnt[node] = cnt[2*node] + cnt[2*node+1];
}
};
void solve() {
int n;
cin>>n;
string s;
cin>>s;
vector<SegTree>tr(26,SegTree(n));
for(int i=0;i<n;i++) {
tr[s[i]-'a'].update(i,i,1,0,n-1,1);
}
int q;
cin>>q;
while(q--) {
int l,r;
cin>>l>>r;
vector<int>cnt(26);
for(int i=0;i<26;i++) {
cnt[i] = tr[i].query(l,r,0,n-1,1);
}
int odd = 0;
for(auto u:cnt) odd += u%2;
if(odd>1) continue;
for(int i=0;i<26;i++) {
tr[i].update(l,r,0,0,n-1,1);
}
int x = l,y = r;
for(int i=0;i<26;i++) {
if(cnt[i]/2) {
tr[i].update(x,x+cnt[i]/2-1,1,0,n-1,1);
tr[i].update(y-cnt[i]/2+1,y,1,0,n-1,1);
x += cnt[i]/2;
y -= cnt[i]/2;
cnt[i]%=2;
}
}
for(int i=0;i<26;i++) {
if(cnt[i]) {
tr[i].update(x,x,1,0,n-1,1);
}
}
}
string ans(n,'a');
for(int i=0;i<26;i++) {
for(int j=0;j<n;j++) {
if(tr[i].query(j,j,0,n-1,1)) {
ans[j] = (char)('a'+i);
}
}
}
cout<<ans<<enl;
}
signed main() {
ios_base::sync_with_stdio(false);
cin.tie(nullptr);cout.tie(nullptr);
int testcases = 1;
cin>>testcases;
while(testcases--) solve();
return 0;
}

Developing Visual Studio Universal Project - How to extract text from sequential named TextBoxes in for loop

I have a problem with the following code which I thought would extract user input from sequential TextBoxes on a form:
#include "pch.h"
#include "MainPage.xaml.h"
#include <iostream> // for std::cout and std::cin
#include <sstream>
#include <string>
{
int grid[9][9] = { 0 }; // virtual array filled with zeros
//put numbers in array
for (int row = 0; row < 9; ++row)//step through all rows
for (int col = 0; col < 9; ++col) //step through all columns
{
row = row + 1; // text box names suffixes are 11 to 19
col - col + 1;
std::string r_str = std::to_string(row);// turn row number into text
std::string c_str = std::to_string(col);//turn column nuber into text
std::string texnum = "Tex" + r_str + c_str;// eg "Tex11" //compile textbox name
String^ str_input = texnum->Text; //get Platform::String from textBox
std::wstring wsstr(str_input->Data());//Convert Platform::String to String
int n = std::stoi(wsstr);//Convert String to Integer
grid[row][col] = n; //put text from texbox in array as a number
}
}
On the line
String^ str_input = texnum->Text;
At the TexBox Identifier of texnum it gives an error of Expression must have a pointer or handle type. If I replace it with an actual Textbox name Tex11 there is no Error but then it only extract text from one box.
I need a way to get text from a TextBox using a string variable instead of the actual string.
Any help would be appreciated.
You can't directly use the string to try to get the Text property, in that case, it is only a string instead of TextBox object. So you need to first get the TextBox control by the name string you get and then get the Text property by the TextBox.
You can try the following code to use the FindName method to get the TextBox object, the "MyPage" is the parent view of TextBox(e.g. StackPanel). In addition, the FindName method needs to be passed the PlatForm::String^ type, it's easy to convert std::wstring to PlatForm::String^, so it's better to only use std::wstring type instead of std::string.
int grid[9][9] = { 0 }; // virtual array filled with zeros
//put numbers in array
for (int row = 0; row < 9; ++row)//step through all rows
for (int col = 0; col < 9; ++col) //step through all columns
{
row = row + 1; // text box names suffixes are 11 to 19
col - col + 1;
std::wstring r_str = std::to_wstring(row);// turn row number into text
std::wstring c_str = std::to_wstring(col);//turn column nuber into text
std::wstring texnum = L"texnum" + r_str + c_str;
Platform::String^ aa = ref new Platform::String(texnum.c_str());
TextBox^ elment = (TextBox ^)MyPage->FindName(ref new Platform::String(texnum.c_str()));
String^ str_input = elment->Text;
std::wstring wsstr(str_input->Data());
int n = std::stoi(wsstr);
}
Here is my final code (The StackPanel is named FirstLine)
void universal::MainPage::Solve_Click(Platform::Object^ sender, Windows::UI::Xaml::RoutedEventArgs^ e)
{
int grid[9][9] = { 0 }; // virtual array filled with zeros
//put numbers in array
for (int row = 0; row < 9; ++row)//step through all rows
for (int col = 0; col < 9; ++col) //step through all columns
{
row = row + 1; // text box names suffixes are 11 to 19
col = col + 1;
std::wstring r_str = std::to_wstring(row);// turn row number into text
std::wstring c_str = std::to_wstring(col);//turn column nuber into text
std::wstring texnum = L"texnum" + r_str + c_str;
Platform::String^ aa = ref new Platform::String(texnum.c_str());
TextBox^ elment = (TextBox^)FirstLine->FindName(aa);
String^ str_input = elment->Text;
std::wstring wsstr(str_input->Data());
int n = std::stoi(wsstr);
}

getting the last 9 digits of a char buffer in Arduino

In a previous code of mine, I was using the following line of code to get the last 9digits of the "command" string
if(command.indexOf("kitchen light: set top color") >=0)
{OnColorValueRed = (command.charAt(28)- 48)*100 + (command.charAt(29)- 48)*10 + (command.charAt(30)- 48);}
Now i am using a char buffer (char packetBuffer[UDP_TX_PACKET_MAX_SIZE];) and using the above code does not work since packetBuffer is not a string, how could I please go about this
Try defining a function to search the string
int indexOf_for_char(const char *str, int str_length, const char *target) {
// naive method
for (int index = 0; index < str_length; index++) {
int j;
// check if matched
for (j = 0; target[j] != '\0' && index + j < str_length && str[index + j] == target[j]; j++);
// if matched, return the index
if (target[j] == '\0') return index;
}
return -1;
}
and using subscripting.
if(indexOf_for_char(packetBuffer, UDP_TX_PACKET_MAX_SIZE, "kitchen light: set top color") >=0)
{OnColorValueRed = (packetBuffer[28]- 48)*100 + (packetBuffer[29]- 48)*10 + (packetBuffer[30]- 48);}

Vigenere.c CS50 Floating Point Exception (Core Dumped)

I am working on the Vigenere exercise from Harvard's CS50 (in case you noticed I'm using string and not str).
My program gives me a Floating Point Exception error when I use "a" in the keyword.
It actually gives me that error
when I use "a" by itself, and
when I use "a" within a bigger word it just gives me wrong output.
For any other kind of keyword, the program works perfectly fine.
I've run a million tests. Why is it doing this? I can't see where I'm dividing or % by 0. The length of the keyword is always at least 1. It is probably going to be some super simple mistake, but I've been at this for about 10 hours and I can barely remember my name.
#include <stdio.h>
#include <cs50.h>
#include <stdlib.h>
#include <ctype.h>
#include <string.h>
int main (int argc, string argv[])
{
//Error message if argc is not 2 and argv[1] is not alphabetical
if (argc != 2)
{
printf("Insert './vigenere' followed by an all alphabetical key\n");
return 1;
}
else if (argv[1])
{
for (int i = 0, n = strlen(argv[1]); i < n; i++)
{
if (isalpha((argv[1])[i]) == false)
{
printf("Insert './vigenere' followed by an all alphabetical key\n");
return 1;
}
}
//Store keyword in variable
string keyword = argv[1];
//Convert all capital chars in keyword to lowercase values, then converts them to alphabetical corresponding number
for (int i = 0, n = strlen(keyword); i < n; i++)
{
if (isupper(keyword[i])) {
keyword[i] += 32;
}
keyword[i] -= 97;
}
//Ask for users message
string message = GetString();
int counter = 0;
int keywordLength = strlen(keyword);
//Iterate through each of the message's chars
for (int i = 0, n = strlen(message); i < n; i++)
{
//Check if ith char is a letter
if (isalpha(message[i])) {
int index = counter % keywordLength;
if (isupper(message[i])) {
char letter = (((message[i] - 65) + (keyword[index])) % 26) + 65;
printf("%c", letter);
counter++;
} else if (islower(message[i])) {
char letter = (((message[i] - 97) + (keyword[index])) % 26) + 97;
printf("%c", letter);
counter++;
}
} else {
//Prints non alphabetic characters
printf("%c", message[i]);
}
}
printf("\n");
return 0;
}
}
This behavior is caused by the line keyword[i] -= 97;, there you make every 'a' in the key stream a zero. Later you use strlen() on the transformed key. So when the key starts with an 'a', keywordLength therefor is set to zero, and the modulo keywordLength operation get into a division by zero. You can fix this by calculating the keyword length before the key transformation.

How to find smallest substring which contains all characters from a given string?

I have recently come across an interesting question on strings. Suppose you are given following:
Input string1: "this is a test string"
Input string2: "tist"
Output string: "t stri"
So, given above, how can I approach towards finding smallest substring of string1 that contains all the characters from string 2?
To see more details including working code, check my blog post at:
http://www.leetcode.com/2010/11/finding-minimum-window-in-s-which.html
To help illustrate this approach, I use an example: string1 = "acbbaca" and string2 = "aba". Here, we also use the term "window", which means a contiguous block of characters from string1 (could be interchanged with the term substring).
i) string1 = "acbbaca" and string2 = "aba".
ii) The first minimum window is found.
Notice that we cannot advance begin
pointer as hasFound['a'] ==
needToFind['a'] == 2. Advancing would
mean breaking the constraint.
iii) The second window is found. begin
pointer still points to the first
element 'a'. hasFound['a'] (3) is
greater than needToFind['a'] (2). We
decrement hasFound['a'] by one and
advance begin pointer to the right.
iv) We skip 'c' since it is not found
in string2. Begin pointer now points to 'b'.
hasFound['b'] (2) is greater than
needToFind['b'] (1). We decrement
hasFound['b'] by one and advance begin
pointer to the right.
v) Begin pointer now points to the
next 'b'. hasFound['b'] (1) is equal
to needToFind['b'] (1). We stop
immediately and this is our newly
found minimum window.
The idea is mainly based on the help of two pointers (begin and end position of the window) and two tables (needToFind and hasFound) while traversing string1. needToFind stores the total count of a character in string2 and hasFound stores the total count of a character met so far. We also use a count variable to store the total characters in string2 that's met so far (not counting characters where hasFound[x] exceeds needToFind[x]). When count equals string2's length, we know a valid window is found.
Each time we advance the end pointer (pointing to an element x), we increment hasFound[x] by one. We also increment count by one if hasFound[x] is less than or equal to needToFind[x]. Why? When the constraint is met (that is, count equals to string2's size), we immediately advance begin pointer as far right as possible while maintaining the constraint.
How do we check if it is maintaining the constraint? Assume that begin points to an element x, we check if hasFound[x] is greater than needToFind[x]. If it is, we can decrement hasFound[x] by one and advancing begin pointer without breaking the constraint. On the other hand, if it is not, we stop immediately as advancing begin pointer breaks the window constraint.
Finally, we check if the minimum window length is less than the current minimum. Update the current minimum if a new minimum is found.
Essentially, the algorithm finds the first window that satisfies the constraint, then continue maintaining the constraint throughout.
You can do a histogram sweep in O(N+M) time and O(1) space where N is the number of characters in the first string and M is the number of characters in the second.
It works like this:
Make a histogram of the second string's characters (key operation is hist2[ s2[i] ]++).
Make a cumulative histogram of the first string's characters until that histogram contains every character that the second string's histogram contains (which I will call "the histogram condition").
Then move forwards on the first string, subtracting from the histogram, until it fails to meet the histogram condition. Mark that bit of the first string (before the final move) as your tentative substring.
Move the front of the substring forwards again until you meet the histogram condition again. Move the end forwards until it fails again. If this is a shorter substring than the first, mark that as your tentative substring.
Repeat until you've passed through the entire first string.
The marked substring is your answer.
Note that by varying the check you use on the histogram condition, you can choose either to have the same set of characters as the second string, or at least as many characters of each type. (Its just the difference between a[i]>0 && b[i]>0 and a[i]>=b[i].)
You can speed up the histogram checks if you keep a track of which condition is not satisfied when you're trying to satisfy it, and checking only the thing that you decrement when you're trying to break it. (On the initial buildup, you count how many items you've satisfied, and increment that count every time you add a new character that takes the condition from false to true.)
Here's an O(n) solution. The basic idea is simple: for each starting index, find the least ending index such that the substring contains all of the necessary letters. The trick is that the least ending index increases over the course of the function, so with a little data structure support, we consider each character at most twice.
In Python:
from collections import defaultdict
def smallest(s1, s2):
assert s2 != ''
d = defaultdict(int)
nneg = [0] # number of negative entries in d
def incr(c):
d[c] += 1
if d[c] == 0:
nneg[0] -= 1
def decr(c):
if d[c] == 0:
nneg[0] += 1
d[c] -= 1
for c in s2:
decr(c)
minlen = len(s1) + 1
j = 0
for i in xrange(len(s1)):
while nneg[0] > 0:
if j >= len(s1):
return minlen
incr(s1[j])
j += 1
minlen = min(minlen, j - i)
decr(s1[i])
return minlen
I received the same interview question. I am a C++ candidate but I was in a position to code relatively fast in JAVA.
Java [Courtesy : Sumod Mathilakath]
import java.io.*;
import java.util.*;
class UserMainCode
{
public String GetSubString(String input1,String input2){
// Write code here...
return find(input1, input2);
}
private static boolean containsPatternChar(int[] sCount, int[] pCount) {
for(int i=0;i<256;i++) {
if(pCount[i]>sCount[i])
return false;
}
return true;
}
public static String find(String s, String p) {
if (p.length() > s.length())
return null;
int[] pCount = new int[256];
int[] sCount = new int[256];
// Time: O(p.lenght)
for(int i=0;i<p.length();i++) {
pCount[(int)(p.charAt(i))]++;
sCount[(int)(s.charAt(i))]++;
}
int i = 0, j = p.length(), min = Integer.MAX_VALUE;
String res = null;
// Time: O(s.lenght)
while (j < s.length()) {
if (containsPatternChar(sCount, pCount)) {
if ((j - i) < min) {
min = j - i;
res = s.substring(i, j);
// This is the smallest possible substring.
if(min==p.length())
break;
// Reduce the window size.
sCount[(int)(s.charAt(i))]--;
i++;
}
} else {
sCount[(int)(s.charAt(j))]++;
// Increase the window size.
j++;
}
}
System.out.println(res);
return res;
}
}
C++ [Courtesy : sundeepblue]
#include <iostream>
#include <vector>
#include <string>
#include <climits>
using namespace std;
string find_minimum_window(string s, string t) {
if(s.empty() || t.empty()) return;
int ns = s.size(), nt = t.size();
vector<int> total(256, 0);
vector<int> sofar(256, 0);
for(int i=0; i<nt; i++)
total[t[i]]++;
int L = 0, R;
int minL = 0; //gist2
int count = 0;
int min_win_len = INT_MAX;
for(R=0; R<ns; R++) { // gist0, a big for loop
if(total[s[R]] == 0) continue;
else sofar[s[R]]++;
if(sofar[s[R]] <= total[s[R]]) // gist1, <= not <
count++;
if(count == nt) { // POS1
while(true) {
char c = s[L];
if(total[c] == 0) { L++; }
else if(sofar[c] > total[c]) {
sofar[c]--;
L++;
}
else break;
}
if(R - L + 1 < min_win_len) { // this judge should be inside POS1
min_win_len = R - L + 1;
minL = L;
}
}
}
string res;
if(count == nt) // gist3, cannot forget this.
res = s.substr(minL, min_win_len); // gist4, start from "minL" not "L"
return res;
}
int main() {
string s = "abdccdedca";
cout << find_minimum_window(s, "acd");
}
Erlang [Courtesy : wardbekker]
-module(leetcode).
-export([min_window/0]).
%% Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n).
%% For example,
%% S = "ADOBECODEBANC"
%% T = "ABC"
%% Minimum window is "BANC".
%% Note:
%% If there is no such window in S that covers all characters in T, return the emtpy string "".
%% If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S.
min_window() ->
"eca" = min_window("cabeca", "cae"),
"eca" = min_window("cfabeca", "cae"),
"aec" = min_window("cabefgecdaecf", "cae"),
"cwae" = min_window("cabwefgewcwaefcf", "cae"),
"BANC" = min_window("ADOBECODEBANC", "ABC"),
ok.
min_window(T, S) ->
min_window(T, S, []).
min_window([], _T, MinWindow) ->
MinWindow;
min_window([H | Rest], T, MinWindow) ->
NewMinWindow = case lists:member(H, T) of
true ->
MinWindowFound = fullfill_window(Rest, lists:delete(H, T), [H]),
case length(MinWindow) == 0 orelse (length(MinWindow) > length(MinWindowFound)
andalso length(MinWindowFound) > 0) of
true ->
MinWindowFound;
false ->
MinWindow
end;
false ->
MinWindow
end,
min_window(Rest, T, NewMinWindow).
fullfill_window(_, [], Acc) ->
%% window completed
Acc;
fullfill_window([], _T, _Acc) ->
%% no window found
"";
fullfill_window([H | Rest], T, Acc) ->
%% completing window
case lists:member(H, T) of
true ->
fullfill_window(Rest, lists:delete(H, T), Acc ++ [H]);
false ->
fullfill_window(Rest, T, Acc ++ [H])
end.
REF:
http://articles.leetcode.com/finding-minimum-window-in-s-which/#comment-511216
http://www.mif.vu.lt/~valdas/ALGORITMAI/LITERATURA/Cormen/Cormen.pdf
Please have a look at this as well:
//-----------------------------------------------------------------------
bool IsInSet(char ch, char* cSet)
{
char* cSetptr = cSet;
int index = 0;
while (*(cSet+ index) != '\0')
{
if(ch == *(cSet+ index))
{
return true;
}
++index;
}
return false;
}
void removeChar(char ch, char* cSet)
{
bool bShift = false;
int index = 0;
while (*(cSet + index) != '\0')
{
if( (ch == *(cSet + index)) || bShift)
{
*(cSet + index) = *(cSet + index + 1);
bShift = true;
}
++index;
}
}
typedef struct subStr
{
short iStart;
short iEnd;
short szStr;
}ss;
char* subStringSmallest(char* testStr, char* cSet)
{
char* subString = NULL;
int iSzSet = strlen(cSet) + 1;
int iSzString = strlen(testStr)+ 1;
char* cSetBackUp = new char[iSzSet];
memcpy((void*)cSetBackUp, (void*)cSet, iSzSet);
int iStartIndx = -1;
int iEndIndx = -1;
int iIndexStartNext = -1;
std::vector<ss> subStrVec;
int index = 0;
while( *(testStr+index) != '\0' )
{
if (IsInSet(*(testStr+index), cSetBackUp))
{
removeChar(*(testStr+index), cSetBackUp);
if(iStartIndx < 0)
{
iStartIndx = index;
}
else if( iIndexStartNext < 0)
iIndexStartNext = index;
else
;
if (strlen(cSetBackUp) == 0 )
{
iEndIndx = index;
if( iIndexStartNext == -1)
break;
else
{
index = iIndexStartNext;
ss stemp = {iStartIndx, iEndIndx, (iEndIndx-iStartIndx + 1)};
subStrVec.push_back(stemp);
iStartIndx = iEndIndx = iIndexStartNext = -1;
memcpy((void*)cSetBackUp, (void*)cSet, iSzSet);
continue;
}
}
}
else
{
if (IsInSet(*(testStr+index), cSet))
{
if(iIndexStartNext < 0)
iIndexStartNext = index;
}
}
++index;
}
int indexSmallest = 0;
for(int indexVec = 0; indexVec < subStrVec.size(); ++indexVec)
{
if(subStrVec[indexSmallest].szStr > subStrVec[indexVec].szStr)
indexSmallest = indexVec;
}
subString = new char[(subStrVec[indexSmallest].szStr) + 1];
memcpy((void*)subString, (void*)(testStr+ subStrVec[indexSmallest].iStart), subStrVec[indexSmallest].szStr);
memset((void*)(subString + subStrVec[indexSmallest].szStr), 0, 1);
delete[] cSetBackUp;
return subString;
}
//--------------------------------------------------------------------
Edit: apparently there's an O(n) algorithm (cf. algorithmist's answer). Obviously this have this will beat the [naive] baseline described below!
Too bad I gotta go... I'm a bit suspicious that we can get O(n). I'll check in tomorrow to see the winner ;-) Have fun!
Tentative algorithm:
The general idea is to sequentially try and use a character from str2 found in str1 as the start of a search (in either/both directions) of all the other letters of str2. By keeping a "length of best match so far" value, we can abort searches when they exceed this. Other heuristics can probably be used to further abort suboptimal (so far) solutions. The choice of the order of the starting letters in str1 matters much; it is suggested to start with the letter(s) of str1 which have the lowest count and to try with the other letters, of an increasing count, in subsequent attempts.
[loose pseudo-code]
- get count for each letter/character in str1 (number of As, Bs etc.)
- get count for each letter in str2
- minLen = length(str1) + 1 (the +1 indicates you're not sure all chars of
str2 are in str1)
- Starting with the letter from string2 which is found the least in string1,
look for other letters of Str2, in either direction of str1, until you've
found them all (or not, at which case response = impossible => done!).
set x = length(corresponding substring of str1).
- if (x < minLen),
set minlen = x,
also memorize the start/len of the str1 substring.
- continue trying with other letters of str1 (going the up the frequency
list in str1), but abort search as soon as length(substring of strl)
reaches or exceed minLen.
We can find a few other heuristics that would allow aborting a
particular search, based on [pre-calculated ?] distance between a given
letter in str1 and some (all?) of the letters in str2.
- the overall search terminates when minLen = length(str2) or when
we've used all letters of str1 (which match one letter of str2)
as a starting point for the search
Here is Java implementation
public static String shortestSubstrContainingAllChars(String input, String target) {
int needToFind[] = new int[256];
int hasFound[] = new int[256];
int totalCharCount = 0;
String result = null;
char[] targetCharArray = target.toCharArray();
for (int i = 0; i < targetCharArray.length; i++) {
needToFind[targetCharArray[i]]++;
}
char[] inputCharArray = input.toCharArray();
for (int begin = 0, end = 0; end < inputCharArray.length; end++) {
if (needToFind[inputCharArray[end]] == 0) {
continue;
}
hasFound[inputCharArray[end]]++;
if (hasFound[inputCharArray[end]] <= needToFind[inputCharArray[end]]) {
totalCharCount ++;
}
if (totalCharCount == target.length()) {
while (needToFind[inputCharArray[begin]] == 0
|| hasFound[inputCharArray[begin]] > needToFind[inputCharArray[begin]]) {
if (hasFound[inputCharArray[begin]] > needToFind[inputCharArray[begin]]) {
hasFound[inputCharArray[begin]]--;
}
begin++;
}
String substring = input.substring(begin, end + 1);
if (result == null || result.length() > substring.length()) {
result = substring;
}
}
}
return result;
}
Here is the Junit Test
#Test
public void shortestSubstringContainingAllCharsTest() {
String result = StringUtil.shortestSubstrContainingAllChars("acbbaca", "aba");
assertThat(result, equalTo("baca"));
result = StringUtil.shortestSubstrContainingAllChars("acbbADOBECODEBANCaca", "ABC");
assertThat(result, equalTo("BANC"));
result = StringUtil.shortestSubstrContainingAllChars("this is a test string", "tist");
assertThat(result, equalTo("t stri"));
}
//[ShortestSubstring.java][1]
public class ShortestSubstring {
public static void main(String[] args) {
String input1 = "My name is Fran";
String input2 = "rim";
System.out.println(getShortestSubstring(input1, input2));
}
private static String getShortestSubstring(String mainString, String toBeSearched) {
int mainStringLength = mainString.length();
int toBeSearchedLength = toBeSearched.length();
if (toBeSearchedLength > mainStringLength) {
throw new IllegalArgumentException("search string cannot be larger than main string");
}
for (int j = 0; j < mainStringLength; j++) {
for (int i = 0; i <= mainStringLength - toBeSearchedLength; i++) {
String substring = mainString.substring(i, i + toBeSearchedLength);
if (checkIfMatchFound(substring, toBeSearched)) {
return substring;
}
}
toBeSearchedLength++;
}
return null;
}
private static boolean checkIfMatchFound(String substring, String toBeSearched) {
char[] charArraySubstring = substring.toCharArray();
char[] charArrayToBeSearched = toBeSearched.toCharArray();
int count = 0;
for (int i = 0; i < charArraySubstring.length; i++) {
for (int j = 0; j < charArrayToBeSearched.length; j++) {
if (String.valueOf(charArraySubstring[i]).equalsIgnoreCase(String.valueOf(charArrayToBeSearched[j]))) {
count++;
}
}
}
return count == charArrayToBeSearched.length;
}
}
This is an approach using prime numbers to avoid one loop, and replace it with multiplications. Several other minor optimizations can be made.
Assign a unique prime number to any of the characters that you want to find, and 1 to the uninteresting characters.
Find the product of a matching string by multiplying the prime number with the number of occurrences it should have. Now this product can only be found if the same prime factors are used.
Search the string from the beginning, multiplying the respective prime number as you move into a running product.
If the number is greater than the correct sum, remove the first character and divide its prime number out of your running product.
If the number is less than the correct sum, include the next character and multiply it into your running product.
If the number is the same as the correct sum you have found a match, slide beginning and end to next character and continue searching for other matches.
Decide which of the matches is the shortest.
Gist
charcount = { 'a': 3, 'b' : 1 };
str = "kjhdfsbabasdadaaaaasdkaaajbajerhhayeom"
def find (c, s):
Ns = len (s)
C = list (c.keys ())
D = list (c.values ())
# prime numbers assigned to the first 25 chars
prmsi = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89 , 97]
# primes used in the key, all other set to 1
prms = []
Cord = [ord(c) - ord('a') for c in C]
for e,p in enumerate(prmsi):
if e in Cord:
prms.append (p)
else:
prms.append (1)
# Product of match
T = 1
for c,d in zip(C,D):
p = prms[ord (c) - ord('a')]
T *= p**d
print ("T=", T)
t = 1 # product of current string
f = 0
i = 0
matches = []
mi = 0
mn = Ns
mm = 0
while i < Ns:
k = prms[ord(s[i]) - ord ('a')]
t *= k
print ("testing:", s[f:i+1])
if (t > T):
# included too many chars: move start
t /= prms[ord(s[f]) - ord('a')] # remove first char, usually division by 1
f += 1 # increment start position
t /= k # will be retested, could be replaced with bool
elif t == T:
# found match
print ("FOUND match:", s[f:i+1])
matches.append (s[f:i+1])
if (i - f) < mn:
mm = mi
mn = i - f
mi += 1
t /= prms[ord(s[f]) - ord('a')] # remove first matching char
# look for next match
i += 1
f += 1
else:
# no match yet, keep searching
i += 1
return (mm, matches)
print (find (charcount, str))
(note: this answer was originally posted to a duplicate question, the original answer is now deleted.)
C# Implementation:
public static Tuple<int, int> FindMinSubstringWindow(string input, string pattern)
{
Tuple<int, int> windowCoords = new Tuple<int, int>(0, input.Length - 1);
int[] patternHist = new int[256];
for (int i = 0; i < pattern.Length; i++)
{
patternHist[pattern[i]]++;
}
int[] inputHist = new int[256];
int minWindowLength = int.MaxValue;
int count = 0;
for (int begin = 0, end = 0; end < input.Length; end++)
{
// Skip what's not in pattern.
if (patternHist[input[end]] == 0)
{
continue;
}
inputHist[input[end]]++;
// Count letters that are in pattern.
if (inputHist[input[end]] <= patternHist[input[end]])
{
count++;
}
// Window found.
if (count == pattern.Length)
{
// Remove extra instances of letters from pattern
// or just letters that aren't part of the pattern
// from the beginning.
while (patternHist[input[begin]] == 0 ||
inputHist[input[begin]] > patternHist[input[begin]])
{
if (inputHist[input[begin]] > patternHist[input[begin]])
{
inputHist[input[begin]]--;
}
begin++;
}
// Current window found.
int windowLength = end - begin + 1;
if (windowLength < minWindowLength)
{
windowCoords = new Tuple<int, int>(begin, end);
minWindowLength = windowLength;
}
}
}
if (count == pattern.Length)
{
return windowCoords;
}
return null;
}
I've implemented it using Python3 at O(N) efficiency:
def get(s, alphabet="abc"):
seen = {}
for c in alphabet:
seen[c] = 0
seen[s[0]] = 1
start = 0
end = 0
shortest_s = 0
shortest_e = 99999
while end + 1 < len(s):
while seen[s[start]] > 1:
seen[s[start]] -= 1
start += 1
# Constant time check:
if sum(seen.values()) == len(alphabet) and all(v == 1 for v in seen.values()) and \
shortest_e - shortest_s > end - start:
shortest_s = start
shortest_e = end
end += 1
seen[s[end]] += 1
return s[shortest_s: shortest_e + 1]
print(get("abbcac")) # Expected to return "bca"
String s = "xyyzyzyx";
String s1 = "xyz";
String finalString ="";
Map<Character,Integer> hm = new HashMap<>();
if(s1!=null && s!=null && s.length()>s1.length()){
for(int i =0;i<s1.length();i++){
if(hm.get(s1.charAt(i))!=null){
int k = hm.get(s1.charAt(i))+1;
hm.put(s1.charAt(i), k);
}else
hm.put(s1.charAt(i), 1);
}
Map<Character,Integer> t = new HashMap<>();
int start =-1;
for(int j=0;j<s.length();j++){
if(hm.get(s.charAt(j))!=null){
if(t.get(s.charAt(j))!=null){
if(t.get(s.charAt(j))!=hm.get(s.charAt(j))){
int k = t.get(s.charAt(j))+1;
t.put(s.charAt(j), k);
}
}else{
t.put(s.charAt(j), 1);
if(start==-1){
if(j+s1.length()>s.length()){
break;
}
start = j;
}
}
if(hm.equals(t)){
t = new HashMap<>();
if(finalString.length()<s.substring(start,j+1).length());
{
finalString=s.substring(start,j+1);
}
j=start;
start=-1;
}
}
}
JavaScript solution in bruteforce way:
function shortestSubStringOfUniqueChars(s){
var uniqueArr = [];
for(let i=0; i<s.length; i++){
if(uniqueArr.indexOf(s.charAt(i)) <0){
uniqueArr.push(s.charAt(i));
}
}
let windoww = uniqueArr.length;
while(windoww < s.length){
for(let i=0; i<s.length - windoww; i++){
let match = true;
let tempArr = [];
for(let j=0; j<uniqueArr.length; j++){
if(uniqueArr.indexOf(s.charAt(i+j))<0){
match = false;
break;
}
}
let checkStr
if(match){
checkStr = s.substr(i, windoww);
for(let j=0; j<uniqueArr.length; j++){
if(uniqueArr.indexOf(checkStr.charAt(j))<0){
match = false;
break;
}
}
}
if(match){
return checkStr;
}
}
windoww = windoww + 1;
}
}
console.log(shortestSubStringOfUniqueChars("ABA"));
# Python implementation
s = input('Enter the string : ')
s1 = input('Enter the substring to search : ')
l = [] # List to record all the matching combinations
check = all([char in s for char in s1])
if check == True:
for i in range(len(s1),len(s)+1) :
for j in range(0,i+len(s1)+2):
if (i+j) < len(s)+1:
cnt = 0
b = all([char in s[j:i+j] for char in s1])
if (b == True) :
l.append(s[j:i+j])
print('The smallest substring containing',s1,'is',l[0])
else:
print('Please enter a valid substring')
Java code for the approach discussed above:
private static Map<Character, Integer> frequency;
private static Set<Character> charsCovered;
private static Map<Character, Integer> encountered;
/**
* To set the first match index as an intial start point
*/
private static boolean hasStarted = false;
private static int currentStartIndex = 0;
private static int finalStartIndex = 0;
private static int finalEndIndex = 0;
private static int minLen = Integer.MAX_VALUE;
private static int currentLen = 0;
/**
* Whether we have already found the match and now looking for other
* alternatives.
*/
private static boolean isFound = false;
private static char currentChar;
public static String findSmallestSubStringWithAllChars(String big, String small) {
if (null == big || null == small || big.isEmpty() || small.isEmpty()) {
return null;
}
frequency = new HashMap<Character, Integer>();
instantiateFrequencyMap(small);
charsCovered = new HashSet<Character>();
int charsToBeCovered = frequency.size();
encountered = new HashMap<Character, Integer>();
for (int i = 0; i < big.length(); i++) {
currentChar = big.charAt(i);
if (frequency.containsKey(currentChar) && !isFound) {
if (!hasStarted && !isFound) {
hasStarted = true;
currentStartIndex = i;
}
updateEncounteredMapAndCharsCoveredSet(currentChar);
if (charsCovered.size() == charsToBeCovered) {
currentLen = i - currentStartIndex;
isFound = true;
updateMinLength(i);
}
} else if (frequency.containsKey(currentChar) && isFound) {
updateEncounteredMapAndCharsCoveredSet(currentChar);
if (currentChar == big.charAt(currentStartIndex)) {
encountered.put(currentChar, encountered.get(currentChar) - 1);
currentStartIndex++;
while (currentStartIndex < i) {
if (encountered.containsKey(big.charAt(currentStartIndex))
&& encountered.get(big.charAt(currentStartIndex)) > frequency.get(big
.charAt(currentStartIndex))) {
encountered.put(big.charAt(currentStartIndex),
encountered.get(big.charAt(currentStartIndex)) - 1);
} else if (encountered.containsKey(big.charAt(currentStartIndex))) {
break;
}
currentStartIndex++;
}
}
currentLen = i - currentStartIndex;
updateMinLength(i);
}
}
System.out.println("start: " + finalStartIndex + " finalEnd : " + finalEndIndex);
return big.substring(finalStartIndex, finalEndIndex + 1);
}
private static void updateMinLength(int index) {
if (minLen > currentLen) {
minLen = currentLen;
finalStartIndex = currentStartIndex;
finalEndIndex = index;
}
}
private static void updateEncounteredMapAndCharsCoveredSet(Character currentChar) {
if (encountered.containsKey(currentChar)) {
encountered.put(currentChar, encountered.get(currentChar) + 1);
} else {
encountered.put(currentChar, 1);
}
if (encountered.get(currentChar) >= frequency.get(currentChar)) {
charsCovered.add(currentChar);
}
}
private static void instantiateFrequencyMap(String str) {
for (char c : str.toCharArray()) {
if (frequency.containsKey(c)) {
frequency.put(c, frequency.get(c) + 1);
} else {
frequency.put(c, 1);
}
}
}
public static void main(String[] args) {
String big = "this is a test string";
String small = "tist";
System.out.println("len: " + big.length());
System.out.println(findSmallestSubStringWithAllChars(big, small));
}
def minimum_window(s, t, min_length = 100000):
d = {}
for x in t:
if x in d:
d[x]+= 1
else:
d[x] = 1
tot = sum([y for x,y in d.iteritems()])
l = []
ind = 0
for i,x in enumerate(s):
if ind == 1:
l = l + [x]
if x in d:
tot-=1
if not l:
ind = 1
l = [x]
if tot == 0:
if len(l)<min_length:
min_length = len(l)
min_length = minimum_window(s[i+1:], t, min_length)
return min_length
l_s = "ADOBECODEBANC"
t_s = "ABC"
min_length = minimum_window(l_s, t_s)
if min_length == 100000:
print "Not found"
else:
print min_length

Resources