I have two dataframes ipwithCounryName(12Mb) and ipLogs(1GB) . I would like to join two data frames based on common column ipRange. ipwithCounryName df i brodcasted Below is my code.
val ipwithCounryName_df = Init.iptoCountryBC.value
ipwithCounryName_df .createOrReplaceTempView("inputTable")
ipLogs.createOrReplaceTempView("ipTable")
val joined_table= Init.getSparkSession.sql("SELECT hostname,date,path,status,content_size,inputTable.countryName FROM ipasLong Left JOIN inputTable ON ipasLongValue >= StartingRange AND ipasLongValue <= Endingrange")
=====Physical plan===
*Project [hostname#34, date#98, path#36, status#37, content_size#105L,
countryName#5]
+- BroadcastNestedLoopJoin BuildRight, Inner, ((ipasLongValue#354L >=
StartingRange#2L) && (ipasLongValue#354L <= Endingrange#3L))
:- *Project [UDF:IpToInt(hostname#34) AS IpasLongValue#354L, hostname#34,
date#98, path#36, status#37, content_size#105L]
: +- *Filter ((isnotnull(isIp#112) && isIp#112) &&
isnotnull(UDF:IpToInt(hostname#34)))
: +- InMemoryTableScan [path#36, content_size#105L, isIp#112,
hostname#34, date#98, status#37], [isnotnull(isIp#112), isIp#112,
isnotnull(UDF:IpToInt(hostname#34))]
: +- InMemoryRelation [hostname#34, date#98, path#36, status#37,
content_size#105L, isIp#112], true, 10000, StorageLevel(disk, memory,
deserialized, 1 replicas)
: +- *Project [hostname#34, cast(unix_timestamp(date#35,
dd/MMM/yyyy:HH:mm:ss ZZZZ, Some(Asia/Calcutta)) as timestamp) AS date#98,
path#36, status#37, CASE WHEN isnull(content_size#38L) THEN 0 ELSE
content_size#38L END AS content_size#105L, UDF(hostname#34) AS isIp#112]
: +- *Filter (isnotnull(isBadData#45) && NOT isBadData#45)
: +- InMemoryTableScan [isBadData#45, hostname#34,
status#37, path#36, date#35, content_size#38L], [isnotnull(isBadData#45), NOT
isBadData#45]
: +- InMemoryRelation [hostname#34, date#35,
path#36, status#37, content_size#38L, isBadData#45], true, 10000,
StorageLevel(disk, memory, deserialized, 1 replicas)
: +- *Project [regexp_extract(val#26,
^([^\s]+\s), 1) AS hostname#34, regexp_extract(val#26, ^.*
(\d\d/\w{3}/\d{4}:\d{2}:\d{2}:\d{2} -\d{4}), 1) AS date#35,
regexp_extract(val#26, ^.*"\w+\s+([^\s]+)\s*[(HTTP)]*.*", 1) AS path#36,
cast(regexp_extract(val#26, ^.*"\s+([^\s]+), 1) as int) AS status#37,
cast(regexp_extract(val#26, ^.*\s+(\d+)$, 1) as bigint) AS content_size#38L,
UDF(named_struct(hostname, regexp_extract(val#26, ^([^\s]+\s), 1), date,
regexp_extract(val#26, ^.*(\d\d/\w{3}/\d{4}:\d{2}:\d{2}:\d{2} -\d{4}), 1),
path, regexp_extract(val#26, ^.*"\w+\s+([^\s]+)\s*[(HTTP)]*.*", 1), status,
cast(regexp_extract(val#26, ^.*"\s+([^\s]+), 1) as int), content_size,
cast(regexp_extract(val#26, ^.*\s+(\d+)$, 1) as bigint))) AS isBadData#45]
: +- *FileScan csv [val#26] Batched:
false, Format: CSV, Location:
InMemoryFileIndex[file:/C:/Users/M1047320/Desktop/access_log_Jul95],
PartitionFilters: [], PushedFilters: [], ReadSchema: struct<val:string>
+- BroadcastExchange IdentityBroadcastMode
+- *Project [StartingRange#2L, Endingrange#3L, CountryName#5]
+- *Filter (isnotnull(StartingRange#2L) && isnotnull(Endingrange#3L))
+- *FileScan csv [StartingRange#2L,Endingrange#3L,CountryName#5] Batched: false, Format: CSV, Location: InMemoryFileIndex[file:/C:/Users/M1047320/Documents/Spark-301/Documents/GeoIPCountryWhois.csv], PartitionFilters: [], PushedFilters: [IsNotNull(StartingRange), IsNotNull(Endingrange)], ReadSchema: struct<StartingRange:bigint,Endingrange:bigint,CountryName:string>
Join is taking more time (>30 minutes). I have one more inner join on two different dataframe of same size where join condition is "=". Its taking only 5 minutes. How should i improve my code? Please suggest
Please keep the filter condition in where and join the tables based on common column name.I assummed countryname is the common across both DF.
val joined_table= Init.getSparkSession.sql("SELECT hostname,date,path,status,content_size,inputTable.countryName FROM ipasLong Left JOIN inputTable ON ipasLong.countryName=inputTable.countryName
WHERE ipasLongValue >= StartingRange AND ipasLongValue <= Endingrange")
You can also directly join the dataframes.
val result=ipLogs.join(broadcast(ipwithCounryName),"joincondition","left_outer").where($"ipasLongValue" >= StartingRange && $"ipasLongValue" <= Endingrange).select("select columns")
Hope it helps you.
You can try increasing your JVM parameters to the capacity of your system to fully utilize it like below:
spark-submit --driver-memory 12G --conf spark.driver.maxResultSize=3g --executor-cores 6 --executor-memory 16G
Related
In my main transform, I'm running an algorithm by doing a groupby and then applyInPandas in Foundry. The build takes very long, and one idea is to organize the files to prevent shuffle reads and sorting, using Hash partitioning/bucketing.
For a mcve, I have the following dataset:
def example_df():
return spark.createDataFrame(
[("1","2", 1.0), ("1","3", 2.0), ("2","4", 3.0), ("2","5", 5.0), ("2","2", 10.0)],
("id_1","id_2", "v"))
The transform I want to apply is:
def df1(example_df):
def subtract_mean(pdf):
v = pdf.v
return pdf.assign(v=v - v.mean())
return example_df.groupby("id_1","id_2").applyInPandas(subtract_mean, schema="id_1 string, id_2 string, v double")
When I look at the original query plan, with no partitioning, it looks like the following:
Physical Plan:
Execute FoundrySaveDatasetCommand `ri.foundry.main.transaction.00000059-eb1b-61f4-bdb8-a030ac6baf0a#master`.`ri.foundry.main.dataset.eb664037-fcae-4ce2-b92b-bd103cd504b3`, ErrorIfExists, [id_1, id_2, v], ComputedStatsServiceV2Blocking{_endpointChannelFactory=DialogueChannel#3127a629{channelName=dialogue-nonreloading-ComputedStatsServiceV2Blocking, delegate=com.palantir.dialogue.core.DialogueChannel$Builder$$Lambda$713/0x0000000800807c40#70f51090}, runtime=com.palantir.conjure.java.dialogue.serde.DefaultConjureRuntime#6c67a62a}, com.palantir.foundry.spark.catalog.caching.CachingSchemaService#7d881feb, com.palantir.foundry.spark.catalog.caching.CachingMetadataService#57a1ef9e, com.palantir.foundry.spark.catalog.FoundrySparkResolver#4d38f6f5, com.palantir.foundry.spark.auth.DefaultFoundrySparkAuthSupplier#21103ab4
+- AdaptiveSparkPlan isFinalPlan=true
+- == Final Plan ==
*(3) BasicStats `ri.foundry.main.transaction.00000059-eb1b-61f4-bdb8-a030ac6baf0a#master`.`ri.foundry.main.dataset.eb664037-fcae-4ce2-b92b-bd103cd504b3`
+- FlatMapGroupsInPandas [id_1#487, id_2#488], subtract_mean(id_1#487, id_2#488, v#489), [id_1#497, id_2#498, v#499]
+- *(2) Sort [id_1#487 ASC NULLS FIRST, id_2#488 ASC NULLS FIRST], false, 0
+- AQEShuffleRead coalesced
+- ShuffleQueryStage 0
+- Exchange hashpartitioning(id_1#487, id_2#488, 200), ENSURE_REQUIREMENTS, [id=#324]
+- *(1) Project [id_1#487, id_2#488, id_1#487, id_2#488, v#489]
+- *(1) ColumnarToRow
+- FileScan parquet !ri.foundry.main.transaction.00000059-eb12-f234-b25f-57e967fbc68e:ri.foundry.main.transaction.00000059-eb12-f234-b25f-57e967fbc68e#00000003-99f9-3d2d-814f-e4db9c920cc2:master.ri.foundry.main.dataset.237cddc5-0835-425c-bfbe-e62c51779dc2[id_1#487,id_2#488,v#489] Batched: true, BucketedScan: false, DataFilters: [], Format: Parquet, Location: InMemoryFileIndex(1 paths)[sparkfoundry:///datasets/..., PartitionFilters: [], PushedFilters: [], ReadSchema: struct<id_1:string,id_2:string,v:double>, ScanMode: RegularMode
My goal is to prevent the need for the Sort, Shuffle (read and query) and Exchange from the query plan.
To achieve this, I hash partition an intermediate dataset, bucketing by the id columns I'm going to groupBy later:
def example_df_bucketed(example_df):
example_df = example_df.repartition(2,"id_1","id_2")
output = Transforms.get_output()
output_fs = output.filesystem()
output.write_dataframe(example_df,bucket_cols=["id_1","id_2"], sort_by=["id_1","id_2"], bucket_count=2)
I try and run the same logic, this time with the bucketed dataset as the input
def df2(example_df_bucketed):
def subtract_mean(pdf):
# pdf is a pandas.DataFrame
v = pdf.v
return pdf.assign(v=v - v.mean())
return example_df_bucketed.groupby("id_1","id_2").applyInPandas(subtract_mean, schema="id_1 string, id_2 string, v double")
This results in the query plan not having a shuffle (hash partition), but it is still sorting.
Physical Plan:
Execute FoundrySaveDatasetCommand `ri.foundry.main.transaction.00000059-ec4c-26f7-a058-98be3f26018c#master`.`ri.foundry.main.dataset.02990b20-95f2-4605-9e7c-578ba071535d`, ErrorIfExists, [id_1, id_2, v], ComputedStatsServiceV2Blocking{_endpointChannelFactory=DialogueChannel#3127a629{channelName=dialogue-nonreloading-ComputedStatsServiceV2Blocking, delegate=com.palantir.dialogue.core.DialogueChannel$Builder$$Lambda$713/0x0000000800807c40#70f51090}, runtime=com.palantir.conjure.java.dialogue.serde.DefaultConjureRuntime#6c67a62a}, com.palantir.foundry.spark.catalog.caching.CachingSchemaService#3db2ee77, com.palantir.foundry.spark.catalog.caching.CachingMetadataService#8086bb, com.palantir.foundry.spark.catalog.FoundrySparkResolver#7ebc329, com.palantir.foundry.spark.auth.DefaultFoundrySparkAuthSupplier#46d15de1
+- AdaptiveSparkPlan isFinalPlan=true
+- == Final Plan ==
*(2) BasicStats `ri.foundry.main.transaction.00000059-ec4c-26f7-a058-98be3f26018c#master`.`ri.foundry.main.dataset.02990b20-95f2-4605-9e7c-578ba071535d`
+- FlatMapGroupsInPandas [id_1#603, id_2#604], subtract_mean(id_1#603, id_2#604, v#605), [id_1#613, id_2#614, v#615]
+- *(1) Sort [id_1#603 ASC NULLS FIRST, id_2#604 ASC NULLS FIRST], false, 0
+- *(1) Project [id_1#603, id_2#604, id_1#603, id_2#604, v#605]
+- *(1) ColumnarToRow
+- FileScan parquet !ri.foundry.main.transaction.00000059-ec22-2287-a0e3-5d9c48a39a83:ri.foundry.main.transaction.00000059-ec22-2287-a0e3-5d9c48a39a83#00000003-99fc-8b63-8d17-b7e45fface86:master.ri.foundry.main.dataset.bbada128-5538-4c7f-b5ba-6d16b15da5bf[id_1#603,id_2#604,v#605] Batched: true, BucketedScan: true, DataFilters: [], Format: Parquet, Location: InMemoryFileIndex(1 paths)[sparkfoundry://foundry/datasets/..., PartitionFilters: [], Partitioning: hashpartitioning(id_1#603, id_2#604, 2), PushedFilters: [], ReadSchema: struct<id_1:string,id_2:string,v:double>, ScanMode: RegularMode, SelectedBucketsCount: 2 out of 2
Since I'm already setting the sort_by when I bucket upstream, why is there still a sort in the query plan? Is there something I can do to avoid this sort?
Im new to using spark/scala here and im having trouble with a refactor of some of my code here. Im running Scala 2.11 using pyspark and in a spark/yarn setup. The following is working but id like to clean it up, and to get the max performance out of this. I read elsewhere that pyspark udf and lambdas can cause huge performance impact so im trying to reduce or remove them were possible.
# Reduce ingest df1 data by joining on allowed table df2
to_process = df2\
.join(
sf.broadcast(df1),
df2.secondary_id == df1.secondary_id,
how="inner")\
.rdd\
.map(lambda r: Row(tag=r['tag_id'], user_uuid=r['user_uuid']))
# Type column fixed to type=2, and tag==key
ready_to_join = to_process.map(lambda r: (r[0], 2, r[1]))
# Join with cassandra table to find matches
exists_in_cass = ready_to_join\
.joinWithCassandraTable(keyspace, table3)\
.on("user_uuid", "type")\
.select("user_uuid")
log.error(f"TEST PRINT - [{exists_in_cass.count()}]")
the cassandra table is such that
CREATE TABLE keyspace.table3 (
user_uuid uuid,
type int,
key text,
value text,
PRIMARY KEY (user_uuid, type, key)
) WITH CLUSTERING ORDER BY (type ASC, key ASC)
currently ive got
to_process = df2\
.join(
sf.broadcast(df1),
df2.secondary_id == df1.secondary_id,
how="inner")\
.select(col("user_uuid"), col("tag_id").alias("tag"))
ready_to_join = to_process\
.withColumn("type", sf.lit(2))\
.select('user_uuid', 'type', col('tag').alias("key"))\
.rdd\
.map(lambda x: Row(x))
# planning on using repartitionByCassandraReplica here after I get it logically working
exists_in_cass = ready_to_join\
.joinWithCassandraTable(keyspace, table3)\
.on("user_uuid", "type")\
.select("user_uuid")
log.error(f"TEST PRINT - [{exists_in_cass.count()}]")
but im getting errors like
2020-10-30 15:10:42 WARN TaskSetManager:66 - Lost task 148.0 in stage 22.0 (TID ----, ---, executor 9): net.razorvine.pickle.PickleException: expected zero arguments for construction of ClassDict (for pyspark.sql.types._create_row)
at net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
looking help from any spark gurus out there to point me to anything stupid I am doing here.
Update
Thanks to Alex's suggestion using the spark-cassandra-connector v2.5+ gives the ability for dataframes to join directly. I updated my code to use this instead.
to_process = df2\
.join(
sf.broadcast(df1),
df2.secondary_id == df1.secondary_id,
how="inner")\
.select(col("user_uuid"), col("tag_id").alias("tag"))
ready_to_join = to_process\
.withColumn("type", sf.lit(2))\
.select(col('user_uuid').alias('c1_user_uuid'), 'type', col('tag').alias("key"))\
cass_table = spark_session
.read \
.format("org.apache.spark.sql.cassandra") \
.options(table=config.table, keyspace=config.keyspace) \
.load()
exists_in_cass = ready_to_join\
.join(
cass_table,
[(cass_table["user_uuid"] == ready_to_join["c1_user_uuid"]) &
(cass_table["key"] == ready_to_join["key"]) &
(cass_table["type"] == ready_to_join["type"])])\
.select(col("c1_user_uuid").alias("user_uuid"))
exists_in_cass.explain()
log.error(f"TEST PRINT - [{exists_in_cass.count()}]")
As far as I know, in theory this should be alot faster ! But im getting errors during runtime with the database timing out.
WARN TaskSetManager:66 - Lost task 827.0 in stage 12.0 (TID 9946, , executor 4): java.io.IOException: Exception during execution of SELECT "user_uuid", "key" FROM "keyspace"."table3" WHERE token("user_uuid") > ? AND token("user_uuid") <= ? AND "type" = ? ALLOW FILTERING: Query timed out after PT2M
TaskSetManager:66 - Lost task 125.0 in stage 12.0 (TID 9215, , executor 7): com.datastax.oss.driver.api.core.DriverTimeoutException: Query timed out after PT2M
etc
I have the config for spark setup to allow for the spark extensions
--packages mysql:mysql-connector-java:5.1.47,com.datastax.spark:spark-cassandra-connector_2.11:2.5.1 \
--conf spark.sql.extensions=com.datastax.spark.connector.CassandraSparkExtensions \
The DAG from spark shows all nodes completely maxed out. Should I be partitioning my data before running my join here?
The explain for this also doesnt show a direct join (explain has more code than snippet above)
== Physical Plan ==
*(6) Project [c1_user_uuid#124 AS user_uuid#158]
+- *(6) SortMergeJoin [c1_user_uuid#124, key#125L], [user_uuid#129, cast(key#131 as bigint)], Inner
:- *(3) Sort [c1_user_uuid#124 ASC NULLS FIRST, key#125L ASC NULLS FIRST], false, 0
: +- Exchange hashpartitioning(c1_user_uuid#124, key#125L, 200)
: +- *(2) Project [id#0 AS c1_user_uuid#124, tag_id#101L AS key#125L]
: +- *(2) BroadcastHashJoin [secondary_id#60], [secondary_id#100], Inner, BuildRight
: :- *(2) Filter (isnotnull(secondary_id#60) && isnotnull(id#0))
: : +- InMemoryTableScan [secondary_id#60, id#0], [isnotnull(secondary_id#60), isnotnull(id#0)]
: : +- InMemoryRelation [secondary_id#60, id#0], StorageLevel(disk, memory, deserialized, 1 replicas)
: : +- *(7) Project [secondary_id#60, id#0]
: : +- Generate explode(split(secondary_ids#1, \|)), [id#0], false, [secondary_id#60]
: : +- *(6) Project [id#0, secondary_ids#1]
: : +- *(6) SortMergeJoin [id#0], [guid#46], Inner
: : :- *(2) Sort [id#0 ASC NULLS FIRST], false, 0
: : : +- Exchange hashpartitioning(id#0, 200)
: : : +- *(1) Filter (isnotnull(id#0) && id#0 RLIKE [0-9a-fA-F]{8}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{12})
: : : +- InMemoryTableScan [id#0, secondary_ids#1], [isnotnull(id#0), id#0 RLIKE [0-9a-fA-F]{8}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{12}]
: : : +- InMemoryRelation [id#0, secondary_ids#1], StorageLevel(disk, memory, deserialized, 1 replicas)
: : : +- Exchange RoundRobinPartitioning(3840)
: : : +- *(1) Filter AtLeastNNulls(n, id#0,secondary_ids#1)
: : : +- *(1) FileScan csv [id#0,secondary_ids#1] Batched: false, Format: CSV, Location: InMemoryFileIndex[inputdata_file, PartitionFilters: [], PushedFilters: [], ReadSchema: struct<id:string,secondary_ids:string>
: : +- *(5) Sort [guid#46 ASC NULLS FIRST], false, 0
: : +- Exchange hashpartitioning(guid#46, 200)
: : +- *(4) Filter (guid#46 RLIKE [0-9a-fA-F]{8}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{4}\-[0-9a-fA-F]{12} && isnotnull(guid#46))
: : +- Generate explode(set_guid#36), false, [guid#46]
: : +- *(3) Project [set_guid#36]
: : +- *(3) Filter (isnotnull(allowed#39) && (allowed#39 = 1))
: : +- *(3) FileScan orc whitelist.whitelist1[set_guid#36,region#39,timestamp#43] Batched: false, Format: ORC, Location: PrunedInMemoryFileIndex[hdfs://file, PartitionCount: 1, PartitionFilters: [isnotnull(timestamp#43), (timestamp#43 = 18567)], PushedFilters: [IsNotNull(region), EqualTo(region,1)], ReadSchema: struct<set_guid:array<string>,region:int>
: +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, string, true]))
FROM TAG as T
JOIN MAP as M
ON T.tag_id = M.tag_id
WHERE (expire >= NOW() OR expire IS NULL)
ORDER BY T.tag_id) AS subset) [numPartitions=1] [secondary_id#100,tag_id#101L] PushedFilters: [*IsNotNull(secondary_id), *IsNotNull(tag_id)], ReadSchema: struct<secondary_id:string,tag_id:bigint>
+- *(5) Sort [user_uuid#129 ASC NULLS FIRST, cast(key#131 as bigint) ASC NULLS FIRST], false, 0
+- Exchange hashpartitioning(user_uuid#129, cast(key#131 as bigint), 200)
+- *(4) Project [user_uuid#129, key#131]
+- *(4) Scan org.apache.spark.sql.cassandra.CassandraSourceRelation [user_uuid#129,key#131] PushedFilters: [*EqualTo(type,2)], ReadSchema: struct<user_uuid:string,key:string>
Im not getting the direct joins working which is causing time outs.
Update 2
I think this isnt resolving to direct joins as my datatypes in the dataframes are off. Specifically the uuid type
Instead of using RDD API with PySpark, I suggest to take Spark Cassandra Connector (SCC) 2.5.x or 3.0.x (release announcement) that contain the implementation of the join of Dataframe with Cassandra - in this case you won't need to go down to RDDs, but just use normal Dataframe API joins.
Please note that this is not enabled by default, so you will need to start your pyspark or spark-submit with special configuration, like this:
pyspark --packages com.datastax.spark:spark-cassandra-connector_2.11:2.5.1 \
--conf spark.sql.extensions=com.datastax.spark.connector.CassandraSparkExtensions
You can find more about joins with Cassandra in my recent blog post on this topic (although it uses Scala, Dataframe part should be translated almost one to one to PySpark)
Suppose I have a streaming dataframe A and a large static dataframe B. Assume that typically A is of size < 10000 records. However, B is a much larger dataframe with size in the range of millions.
Lets assume both A and B have a 'key' column. I want to filter rows in A where A.key is not present in B. What is the best way to achieve this.
Right now, I have tried A.join(B, Seq("key"), "left_anti"). However, the performance is not upto the mark. Is there anyway I can fasten up the process
Physical plan:
== Physical Plan ==
SortMergeJoin [domainName#461], [domain#147], LeftAnti
:- *(5) Sort [domainName#461 ASC NULLS FIRST], false, 0
: +- StreamingDeduplicate [domainName#461], state info [ checkpoint = hdfs://MTPrime-CO4-fed/MTPrime-CO4-0/projects/BingAdsAdQuality/Test/WhoIs/WhoIsStream/checkPoint/state, runId = 9d09398b-efda-41cb-ab77-1b5550cd5da9, opId = 0, ver = 63, numPartitions = 400], 0
: +- Exchange hashpartitioning(domainName#461, 400)
: +- Union
: :- *(2) Project [value#460 AS domainName#461]
: : +- *(2) Filter isnotnull(value#460)
: : +- *(2) SerializeFromObject [staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, input[0, java.lang.String, true], true, false) AS value#460]
: : +- MapPartitions <function1>, obj#459: java.lang.String
: : +- MapPartitions <function1>, obj#436: MTInterfaces.Fraud.RiskEntity
: : +- DeserializeToObject newInstance(class scala.Tuple3), obj#435: scala.Tuple3
: : +- Exchange RoundRobinPartitioning(600)
: : +- *(1) SerializeFromObject [staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, assertnotnull(input[0, scala.Tuple3, true])._1, true, false) AS _1#142, staticinvoke(class org.apache.spark.sql.catalyst.util.DateTimeUtils$, TimestampType, fromJavaTimestamp, assertnotnull(input[0, scala.Tuple3, true])._2, true, false) AS _2#143, staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, assertnotnull(input[0, scala.Tuple3, true])._3, true, false) AS _3#144]
: : +- *(1) MapElements <function1>, obj#141: scala.Tuple3
: : +- *(1) MapElements <function1>, obj#132: scala.Tuple3
: : +- *(1) DeserializeToObject createexternalrow(Body#60.toString, staticinvoke(class org.apache.spark.sql.catalyst.util.DateTimeUtils$, ObjectType(class java.sql.Timestamp), toJavaTimestamp, EventTime#37, true, false), Timestamp#48L, Offset#27L, Partition#72.toString, PartitionKey#84.toString, Publisher#96.toString, SequenceNumber#108L, StructField(Body,StringType,true), StructField(EventTime,TimestampType,true), StructField(Timestamp,LongType,true), StructField(Offset,LongType,true), StructField(Partition,StringType,true), StructField(PartitionKey,StringType,true), StructField(Publisher,StringType,true), StructField(SequenceNumber,LongType,true)), obj#131: org.apache.spark.sql.Row
: : +- *(1) Project [cast(body#608 as string) AS Body#60, enqueuedTime#612 AS EventTime#37, cast(enqueuedTime#612 as bigint) AS Timestamp#48L, cast(offset#610 as bigint) AS Offset#27L, partition#609 AS Partition#72, partitionKey#614 AS PartitionKey#84, publisher#613 AS Publisher#96, sequenceNumber#611L AS SequenceNumber#108L]
: : +- Scan ExistingRDD[body#608,partition#609,offset#610,sequenceNumber#611L,enqueuedTime#612,publisher#613,partitionKey#614,properties#615,systemProperties#616]
: +- *(4) Project [value#453 AS domainName#455]
: +- *(4) Filter isnotnull(value#453)
: +- *(4) SerializeFromObject [staticinvoke(class org.apache.spark.unsafe.types.UTF8String, StringType, fromString, input[0, java.lang.String, true], true, false) AS value#453]
: +- *(4) MapElements <function1>, obj#452: java.lang.String
: +- MapPartitions <function1>, obj#436: MTInterfaces.Fraud.RiskEntity
: +- DeserializeToObject newInstance(class scala.Tuple3), obj#435: scala.Tuple3
: +- ReusedExchange [_1#142, _2#143, _3#144], Exchange RoundRobinPartitioning(600)
+- *(8) Project [domain#147]
+- *(8) Filter (isnotnull(rank#284) && (rank#284 = 1))
+- Window [row_number() windowspecdefinition(domain#147, timestamp#151 DESC NULLS LAST, specifiedwindowframe(RowFrame, unboundedpreceding$(), currentrow$())) AS rank#284], [domain#147], [timestamp#151 DESC NULLS LAST]
+- *(7) Sort [domain#147 ASC NULLS FIRST, timestamp#151 DESC NULLS LAST], false, 0
+- Exchange hashpartitioning(domain#147, 400)
+- *(6) Project [domain#147, timestamp#151]
+- *(6) Filter isnotnull(domain#147)
+- *(6) FileScan csv [domain#147,timestamp#151] Batched: false, Format: CSV, Location: InMemoryFileIndex[hdfs://MTPrime-CO4-fed/MTPrime-CO4-0/projects/BingAdsAdQuality/Test/WhoIs], PartitionFilters: [], PushedFilters: [IsNotNull(domain)], ReadSchema: struct<domain:string,timestamp:string>
Snapshots of query graph:
EDIT
Right now I have moved the lookup data to a Cosmos DB store and created a TempView on top of it (say lookupdata). Now, I need to filter the ones that are not present in the store. I am exploring the following options:
1. create tempview on top of the streaming data as well and query
spark.sql(SELECT * FROM streamingdata s LEFT ANTI JOIN lookupdata l ON s.key = l.key")
Same as 1 but do inner sub-query instead of left anti join. i.e spark.sql("SELECT s.* FROM streamingdata s WHERE s.key NOT IN (SELECT key FROM lookupdata l)")
Retain the streaming df as it is and do a filter op:
df.filter(x => { val key = x.getAs[String])("key")
spark.sql("SELECT * FROM lookupdata l WHERE l.key = '"+key+"'").isEmpty
})
which one would work better?
Please try
from pyspark.sql.functions import broadcast
A.join(broadcast(B), Seq("key"), "left_anti")
It is not the recommended approach to do this with (Structured) Streaming. Imagine you are a Chinese company with 100M customers. How do you see that working on B with a 100M rows?
From my last assignment: If large dataset for reference data evident, use Hbase, or some other other key value store like Cassandra, with mapPartitions if volitatile or non-volatile. This is more difficult though. It was no easy task the data engineer, designer told me. Indeed, it is not that easy. But the way to go.
I have a Spark SQL query that works somewhat like this (actual fields have been omitted):
SELECT
a1.fieldA,
a1.fieldB,
a1.fieldC,
a1.fieldD,
a1.joinType
FROM sample_a a1
WHERE a1.joinType != "test"
UNION
SELECT
a2.fieldA,
a2.fieldB,
a2.fieldC,
b.fieldD,
a2.joinType
FROM sample_a a2
INNER JOIN sample_b b ON b.joinField = a2.joinField
WHERE a2.joinType = "test"
This is working perfectly fine but Spark will read sample_a twice. (From cache or disk)
I'm trying to get rid of the union and came up with the following solution:
SELECT
a.fieldA,
a.fieldB,
a.fieldC,
a.joinType,
CASE WHEN a.joinType = "test" THEN b.fieldD ELSE a.fieldD END as fieldD
FROM sample_a a
LEFT JOIN sample_b b ON a.joinType = "test" AND a.joinField = b.joinField
WHERE a.joinType != "test" OR (a.joinType = "test" AND b.joinField IS NOT NULL)
This should basically do the same thing but Spark is being very weird about it. While the first one keeps the partitions the same as sample_a (~1200) the second one will go down to 200 partitions, which is what sample_b has. It will also put a lot of data into a single partition. (Around 90% of data is in one of the 200 partitions)
The input data is stored in parquet files and not partitioned in any way. While sample_a has a much bigger file size, the joinField values for our joinType = "test" part are a subset of the joinField values in sample_b.
Edit: The physical plans look like this.
First Query:
Union
:- *(1) Project [fieldA#0, fieldD#1 joinType#2, joinField#3]
: +- *(1) Filter (isnotnull(joinType#2) && NOT (joinType#2 = test))
: +- *(1) FileScan parquet [fieldA#0, fieldD#1 joinType#2, joinField#3] Batched: true, Format: Parquet, Location: InMemoryFileIndex[...], PartitionFilters: [], PushedFilters: [IsNotNull(joinType), Not(EqualTo(joinType,test))], ReadSchema: struct<fieldA:string,fieldD:string,joinType:string,joinField:string>
+- *(6) Project [fieldA#0, fieldD#4 joinType#2, joinField#3]
+- *(6) SortMergeJoin [joinField#3], [joinField#5], Inner
:- *(3) Sort [joinField#3 ASC NULLS FIRST], false, 0
: +- Exchange hashpartitioning(joinField#3, 200)
: +- *(2) Project [fieldA#0, fieldD#1 joinType#2, joinField#3]
: +- *(2) Filter ((isnotnull(joinType#2) && (joinType#2 = test)) && isnotnull(joinField#3))
: +- *(2) FileScan parquet [fieldA#0, fieldD#1 joinType#2, joinField#3] Batched: true, Format: Parquet, Location: InMemoryFileIndex[...], PartitionFilters: [], PushedFilters: [IsNotNull(joinType), EqualTo(joinType,test), IsNotNull(joinField)], ReadSchema: struct<fieldA:string,fieldD:string,joinType:string,joinField:string>
+- *(5) Sort [joinField#5 ASC NULLS FIRST], false, 0
+- Exchange hashpartitioning(joinField#5, 200)
+- *(4) FileScan parquet [fieldD#4, joinField#5] Batched: true, Format: Parquet, Location: InMemoryFileIndex[...], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<fieldD:string,joinField:string>
Second Query:
*(5) Project [fieldA#0, CASE WHEN (joinType#2 = test) THEN fieldD#4 ELSE fieldD#1 END AS fieldD#6, joinType#2, joinField#3]
+- *(5) Filter (NOT (joinType#2 = test) || ((joinType#2 = test) && isnotnull(joinField#5)))
+- SortMergeJoin [joinField#3], [joinField#5], LeftOuter, (joinType#2 = test)
:- *(2) Sort [joinField#3 ASC NULLS FIRST], false, 0
: +- Exchange hashpartitioning(joinField#3, 200)
: +- *(1) FileScan parquet [fieldA#0, fieldD#1 joinType#2, joinField#3] Batched: true, Format: Parquet, Location: InMemoryFileIndex[...], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<fieldA:string,fieldD:string,joinType:string,joinField:string>
+- *(4) Sort [joinField#5 ASC NULLS FIRST], false, 0
+- Exchange hashpartitioning(joinField#5, 200)
+- *(3) FileScan parquet [fieldD#4, joinField#5] Batched: true, Format: Parquet, Location: InMemoryFileIndex[...], PartitionFilters: [], PushedFilters: [], ReadSchema: struct<fieldD:string,joinField:string>
The use-case is to self-join a table multiple times.
// Hive Table
val network_file = spark.sqlContext.sql("SELECT * FROM
test.network_file")
// Cache
network_file.cache()
network_file.createOrReplaceTempView("network_design")
Now the following query does self-join multiple times.
val res = spark.sqlContext.sql("""select
one.sourcehub as source,
one.mappedhub as first_leg,
two.mappedhub as second_leg,
one.destinationhub as dest
from
(select * from network_design) one JOIN
(select * from network_design) two JOIN
(select * from network_design) three
ON (two.sourcehub = one.mappedhub )
AND (three.sourcehub = two.mappedhub)
AND (one.destinationhub = two.destinationhub )
AND (two.destinationhub = three.destinationhub)
group by source, first_leg, second_leg, dest
""")
Problem is that the Physical Plan of above query suggests on reading the table three times.
== Physical Plan ==
*HashAggregate(keys=[sourcehub#83, mappedhub#85, mappedhub#109, destinationhub#84], functions=[])
+- Exchange hashpartitioning(sourcehub#83, mappedhub#85, mappedhub#109, destinationhub#84, 200)
+- *HashAggregate(keys=[sourcehub#83, mappedhub#85, mappedhub#109, destinationhub#84], functions=[])
+- *Project [sourcehub#83, destinationhub#84, mappedhub#85, mappedhub#109]
+- *BroadcastHashJoin [mappedhub#109, destinationhub#108], [sourcehub#110, destinationhub#111], Inner, BuildRight
:- *Project [sourcehub#83, destinationhub#84, mappedhub#85, destinationhub#108, mappedhub#109]
: +- *BroadcastHashJoin [mappedhub#85, destinationhub#84], [sourcehub#107, destinationhub#108], Inner, BuildRight
: :- *Filter (isnotnull(destinationhub#84) && isnotnull(mappedhub#85))
: : +- InMemoryTableScan [sourcehub#83, destinationhub#84, mappedhub#85], [isnotnull(destinationhub#84), isnotnull(mappedhub#85)]
: : +- InMemoryRelation [sourcehub#83, destinationhub#84, mappedhub#85], true, 10000, StorageLevel(disk, memory, deserialized, 1 replicas)
: : +- HiveTableScan [sourcehub#0, destinationhub#1, mappedhub#2], HiveTableRelation `test`.`network_file`, org.apache.hadoop.hive.ql.io.orc.OrcSerde, [sourcehub#0, destinationhub#1, mappedhub#2]
: +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, string, false], input[1, string, false]))
: +- *Filter ((isnotnull(sourcehub#107) && isnotnull(destinationhub#108)) && isnotnull(mappedhub#109))
: +- InMemoryTableScan [sourcehub#107, destinationhub#108, mappedhub#109], [isnotnull(sourcehub#107), isnotnull(destinationhub#108), isnotnull(mappedhub#109)]
: +- InMemoryRelation [sourcehub#107, destinationhub#108, mappedhub#109], true, 10000, StorageLevel(disk, memory, deserialized, 1 replicas)
: +- HiveTableScan [sourcehub#0, destinationhub#1, mappedhub#2], HiveTableRelation `test`.`network_file`, org.apache.hadoop.hive.ql.io.orc.OrcSerde, [sourcehub#0, destinationhub#1, mappedhub#2]
+- BroadcastExchange HashedRelationBroadcastMode(List(input[0, string, false], input[1, string, false]))
+- *Filter (isnotnull(sourcehub#110) && isnotnull(destinationhub#111))
+- InMemoryTableScan [sourcehub#110, destinationhub#111], [isnotnull(sourcehub#110), isnotnull(destinationhub#111)]
+- InMemoryRelation [sourcehub#110, destinationhub#111, mappedhub#112], true, 10000, StorageLevel(disk, memory, deserialized, 1 replicas)
+- HiveTableScan [sourcehub#0, destinationhub#1, mappedhub#2], HiveTableRelation `test`.`network_file`, org.apache.hadoop.hive.ql.io.orc.OrcSerde, [sourcehub#0, destinationhub#1, mappedhub#2]
Shouldn't the Spark cache the table once and not read it multiple times?
How can we efficiently cache tables in spark for these self-join cases?
Spark Version - 2.2
Hive ORC is the store downstream.
This sequence of statements ignores the data frame that is to be cached:
network_file.cache() #the result of this is not being used at all
network_file.createOrReplaceTempView("network_design") #doesn't have the cached DF in lineage
You should either overwrite the variable or register the table on the returned data frame:
network_file = network_file.cache()
network_file.createOrReplaceTempView("network_design")
Or:
network_file.cache().createOrReplaceTempView("network_design")