Aesthetics Plotly - Title in the offline mode - python-3.x

I have a basic question, tried many variations and couldn´t get it right. I am trying to put a title in a plotly barchart printes offline in a jupyter notebook. I am using python.
Without the title I can get the graph ok:
from plotly.offline import iplot, init_notebook_mode
init_notebook_mode()
import plotly.graph_objs as go
trace_2 = go.Bar(x=['Jan','Feb','Mar'],
y = [1,2,3],
text = [1,2,3],
textposition = 'auto',
marker=dict(
color='rgb(158,202,225)'),)
data_2 = [trace_2]
fig_2 = go.Figure(data=data_2)
iplot(fig_2)
When I try to put the title in, as in the tutorial, I get a lot of unexpected errors. How can I put the title "Count of the month" on top of the Graph?
tks

You need to use the title property of layout object, which you then pass to fig object, please refer the below example. Also please checkout the official docs for `plotly layout title.
from plotly.offline import iplot, init_notebook_mode
init_notebook_mode()
import plotly.graph_objs as go
trace_2 = go.Bar(x=['Jan','Feb','Mar'],
y = [1,2,3],
text = [1,2,3],
textposition = 'auto',
marker=dict(
color='rgb(158,202,225)'),)
data_2 = [trace_2]
layout = {'title': 'Count of the month'}
fig_2 = go.Figure(data=data_2, layout = layout )
iplot(fig_2)

Related

Bokeh: saved svg different from what is displayed in jupyter notebook

I first render the figure in notebook, then I save it in svg form. The figure display in notebook is correct, but the saved svg is missing some markers.
#!/usr/bin/python3
import pandas as pd
import numpy as np
import math
from bokeh.plotting import figure, show, ColumnDataSource, save, output_file, reset_output
from bokeh.models import HoverTool, Legend
from bokeh.layouts import gridplot
import colorsys # needed for generating N equally extinguishable colors
from itertools import cycle
d = {'Sex': ['male', 'male','male','male', 'male','male','female','female','female','female','female','female'], 'age': [20, 20,20, 25,25,25,20, 20,20,25,25,25], 'working_hours': [20,30,40,20,30,40,20,30,40,20,30,40],'income': [1000, 2000,3000,1500, 2500,3500,1100, 2100,3100,1300, 2300,3300] }
values = pd.DataFrame(data=d)
x_var = 'working_hours'
x_var_dimension = 'H'
y_var = 'income'
y_var_dimension = 'Dollars'
hover = HoverTool(tooltips=[("data (x,y)", "(#x, #y)")])
TOOLS=[hover]
p= figure(width=1200, height=600,tools=TOOLS, x_axis_type='linear', x_axis_label='%s [%s]'%(x_var, x_var_dimension),y_axis_label='%s [%s]'%(y_var, y_var_dimension))
nr_expressions_row_col=9
figs_array_row_col = []
figs_row_row_col=[]
legend_its_row_col = []
legend_its_row_col_renderer = []
loop_count = 0;
markers = ['circle', 'square', 'triangle', 'asterisk', 'circle_x', 'square_x', 'inverted_triangle', 'x', 'circle_cross', 'square_cross', 'diamond', 'cross']
pool = cycle(markers)
for key, group in values.groupby(['Sex']):
for key_sub1, group_sub1 in group.groupby(['age']):
loop_count+=1
x_data = group_sub1[x_var].values;
y_data = group_sub1[y_var].values
(color_r,color_g,color_b) = colorsys.hsv_to_rgb(loop_count*1.0/nr_expressions_row_col, 1, 1)
plot_row_col_line = p.line(x_data, y_data,line_color=(int(255*color_r),int(255*color_g),int(255*color_b)))
plot_row_col_glyph = p.scatter(x_data, y_data, color=(int(255*color_r),int(255*color_g),int(255*color_b)), size=10, marker=next(pool))
legend_its_row_col.append(("%s %s"%(key,key_sub1), [plot_row_col_line, plot_row_col_glyph]))
legend_row_col = Legend(items = legend_its_row_col, location=(0,0))
legend_row_col.click_policy = 'hide'
legend_row_col.background_fill_alpha = 0
p.add_layout(legend_row_col, 'left')
figs_row_row_col.append(p)
figs_array_row_col.append(figs_row_row_col)
grid_row_col = gridplot(figs_array_row_col)
reset_output()
output_notebook()
show(grid_row_col)
p.output_backend = "svg"
export_svgs(grid_row_col, filename="%s/"%'.' + "_" +"stackoverflow.svg")
Here is what I see in notebook, which is what I expected:
And here is what I see when opening '_stackoverflow.svg'
The legend color for 'female 25' and 'male 20' is partially black. (the marker part) and 'female 20' is missing both marker and its legend.
The reason you are seeing different colors in the notebook and the exported image is that they use two different backends. You set the backend to SVG just before exporting it in the last line. Therefore, though the exported image uses SVG backend, the image on the notebook uses the default backend, which is canvas.
The backend can be set with two options: one you used and one where you add output_backend="svg" argument when you call figure. That is, replacing
p= figure(width=1200, height=600,tools=TOOLS, x_axis_type='linear', x_axis_label='%s [%s]'%(x_var, x_var_dimension),y_axis_label='%s [%s]'%(y_var, y_var_dimension))
with
p= figure(width=1200, height=600,tools=TOOLS, x_axis_type='linear', x_axis_label='%s [%s]'%(x_var, x_var_dimension),y_axis_label='%s [%s]'%(y_var, y_var_dimension), output_backend="svg").
Now you will see the same issue you see in the exported image on you notebook image. It seems like this is a bug in the SVG backend, and most likely they are working on that. Unfortunately there is no expected date for the bug fix.

vbar in bokeh doesn't not support nonselection color and alpha?

Update the question:
How to select a certain species in barplot, nonselected bars will change color?
How to show text on top of each bar?
from bokeh.sampledata.iris import flowers
from bokeh.plotting import figure, output_file, show
from bokeh.models import ColumnDataSource, CategoricalColorMapper
from bokeh.layouts import column, row
#color mapper to color data by species
mapper = CategoricalColorMapper(factors = ['setosa','versicolor', 'virginica'],\
palette = ['green', 'blue', 'red'])
output_file("plots.html")
#group by species and plot barplot for count
species = flowers.groupby('species')
source = ColumnDataSource(species)
p = figure(plot_width = 800, plot_height = 400, title = 'Count by Species', \
x_range = source.data['species'], tools = 'box_select')
p.vbar(x = 'species', top = 'petal_length_count', width = 0.8, source = source,\
nonselection_fill_color = 'gray', nonselection_fill_alpha = 0.2,\
color = {'field': 'species', 'transform': mapper})
show(p)
First: please try to ask unrelated questions in separate SO posts.
Hit testing and selection was not implemented for vbar and hbar until recently. Using the recent 0.12.11 release, your code behaves as you are wanting:
Regarding labels for each bar, you want to use the LabelSet annotation, as demonstrated in the User's Guide Something like:
labels = LabelSet(x='species', y='petal_count_length', text='some_column',
x_offset=5, y_offset=5, source=source)
p.add_layout(labels)
The linking question is too vague. I would suggest opening a new SO question with more information and description of what exactly you are trying to accomplish.

Bokeh return empty map

I am trying to create a map with bokeh to show the population in US_cities, but as soon as I run the code, it returns empty map, frame is there but map is not. I am trying to do something like this but for all US Cities.
Here is my code using "us_cities.json" file in bokeh data:
import pandas as pd
from bokeh.io import show
from bokeh.models import (
ColumnDataSource,
HoverTool,
LogColorMapper
)
from bokeh.palettes import Viridis6 as palette
from bokeh.plotting import figure
palette.reverse()
new_data = pd.read_json("/home/alvin/.bokeh/data/us_cities.json")
#Creating random data that I want to show on map
new_data['pop'] = ((new_data['lat'] * 100) - new_data["lon"])/ 800
#Converting pd series to array
xs = new_data['lat'].tolist()
ys = new_data['lon'].tolist()
pops = new_data['pop'].tolist()
#creating ColumnDataSource
source = ColumnDataSource(data=dict(
x=xs,
y=ys,
pop = pops,
))
TOOLS = "pan,wheel_zoom,reset,hover,save"
p = figure(
title="Just a US Map", tools=TOOLS,
x_axis_location=None, y_axis_location=None
)
color_mapper = LogColorMapper(palette=palette)
p.grid.grid_line_color = None
p.patches('x', 'y', source=source,
fill_color={'field': 'pop', 'transform': color_mapper},
fill_alpha=0.7, line_color="white", line_width=0.5)
hover = p.select_one(HoverTool)
hover.point_policy = "follow_mouse"
hover.tooltips = [
("population)", "#pop%"),
("(Long, Lat)", "($x, $y)"),
]
show(p)
What could be the problem here?
I am running python3 and bokeh 0.12.6
If I check my data it looks like this:
enter image description here
The US cities data does not contain glyphs, like the counties data. You can show the counties data, and overlay the cities data as a scatter plot on top:
import pandas as pd
from bokeh.io import show
from bokeh.models import (
ColumnDataSource,
HoverTool,
LogColorMapper
)
from bokeh.palettes import Viridis6 as palette
from bokeh.plotting import figure
from bokeh.sampledata.us_counties import data as counties
palette.reverse()
counties = {
code: county for code, county in counties.items() if county["state"] == "tx"
}
county_xs = [county["lons"] for county in counties.values()]
county_ys = [county["lats"] for county in counties.values()]
csource = ColumnDataSource(data=dict(
x=county_xs,
y=county_ys,
))
new_data = pd.read_json("/home/tc427/.bokeh/data/us_cities.json")[::100]
#Creating random data that I want to show on map
new_data['pop'] = ((new_data['lat'] * 100) - new_data["lon"])/ 800
#Converting pd series to array
xs = new_data['lon'].tolist()
ys = new_data['lat'].tolist()
pops = new_data['pop'].tolist()
#creating ColumnDataSource
source = ColumnDataSource(data=dict(
x=xs,
y=ys,
pop = pops,
))
TOOLS = "pan,wheel_zoom,reset,hover,save"
p = figure(
title="Just a US Map", tools=TOOLS,
)
color_mapper = LogColorMapper(palette=palette, low=0, high=10)
p.patches('x', 'y', source=csource)
#p.patches('x', 'y', source=csource,
# fill_color={'field': 'pop', 'transform': color_mapper},
# fill_alpha=0.7, color="red", line_width=0.5)
p.scatter('x', 'y', source=source, color={'field': 'pop', 'transform': color_mapper})
hover = p.select_one(HoverTool)
hover.point_policy = "follow_mouse"
hover.tooltips = [
("population)", "#pop%"),
("(Long, Lat)", "($x, $y)"),
]
show(p)
I assume you are using a jupyter notebook...
As i have faced the same problem recently, I would suggest you try following steps;
open your browser's JavaScript console and check for errors.
read the discussion in link It seems to be a cronical problem.
It might be caused by many reasons like internet connetction issues, API problems etc. You can find and solve the problem by following above steps.
Once you detect and solve your problem, restarting the kernel will not help since the bokehjs is still loaded in the page. You will need to reload the page.

Bokeh: One url per glyph

I have a set of datapoints, each with a url unique to it. What I want to do is to be able to scatter plot my data, and then open the associated url when clicking the glyph. I have read the discussion here and followed the example here, but neither gets me where I want to be.
I have, somewhat arbitrarily and haphazardly, tried to save the urls in the tag property, to be recalled by the TapTool:
from bokeh.models import OpenURL, TapTool
from bokeh.plotting import figure, show
p = figure(plot_width = 1200,
plot_height = 700,
tools = 'tap')
p.circle(data_x,
data_y,
tags = list(data_urls))
taptool = p.select(type = TapTool, arg = "tag")
taptool.callback = OpenURL(url = '#tag')
show(p)
I have not been able to find any place in the Bokeh documentation that explains the nuts and bolts needed to assemble the behaviour that i want. At least not in terms I can understand.
Could someone please point me in the right direction? Thanks!
The tags property is not relevant, and largely disused. You need to put the URLs in a column in the plot data source, so that the OpenURL callback can access it:
from bokeh.models import ColumnDataSource, OpenURL, TapTool
from bokeh.plotting import figure, show
p = figure(plot_width=400, plot_height=400,
tools="tap", title="Click the Dots")
source = ColumnDataSource(data=dict(
x=[1, 2, 3, 4, 5],
y=[2, 5, 8, 2, 7],
color=["navy", "orange", "olive", "firebrick", "gold"]
))
p.circle('x', 'y', color='color', size=20, source=source)
# use the "color" column of the CDS to complete the URL
# e.g. if the glyph at index 10 is selected, then #color
# will be replaced with source.data['color'][10]
url = "http://www.colors.commutercreative.com/#color/"
taptool = p.select(type=TapTool)
taptool.callback = OpenURL(url=url)
show(p)
This example is documented (and live) here:
https://docs.bokeh.org/en/latest/docs/user_guide/interaction/callbacks.html#openurl

In Bokeh, how do I add tooltips to a Timeseries chart (hover tool)?

Is it possible to add Tooltips to a Timeseries chart?
In the simplified code example below, I want to see a single column name ('a','b' or 'c') when the mouse hovers over the relevant line.
Instead, a "???" is displayed and ALL three lines get a tool tip (rather than just the one im hovering over)
Per the documentation (
http://docs.bokeh.org/en/latest/docs/user_guide/tools.html#hovertool), field names starting with “#” are interpreted as columns on the data source.
How can I display the 'columns' from a pandas DataFrame in the tooltip?
Or, if the high level TimeSeries interface doesn't support this, any clues for using the lower level interfaces to do the same thing? (line? multi_line?) or convert the DataFrame into a different format (ColumnDataSource?)
For bonus credit, how should the "$x" be formatted to display the date as a date?
thanks in advance
import pandas as pd
import numpy as np
from bokeh.charts import TimeSeries
from bokeh.models import HoverTool
from bokeh.plotting import show
toy_df = pd.DataFrame(data=np.random.rand(5,3), columns = ('a', 'b' ,'c'), index = pd.DatetimeIndex(start='01-01-2015',periods=5, freq='d'))
p = TimeSeries(toy_df, tools='hover')
hover = p.select(dict(type=HoverTool))
hover.tooltips = [
("Series", "#columns"),
("Date", "$x"),
("Value", "$y"),
]
show(p)
Below is what I came up with.
Its not pretty but it works.
Im still new to Bokeh (& Python for that matter) so if anyone wants to suggest a better way to do this, please feel free.
import pandas as pd
import numpy as np
from bokeh.charts import TimeSeries
from bokeh.models import HoverTool
from bokeh.plotting import show
toy_df = pd.DataFrame(data=np.random.rand(5,3), columns = ('a', 'b' ,'c'), index = pd.DatetimeIndex(start='01-01-2015',periods=5, freq='d'))
_tools_to_show = 'box_zoom,pan,save,hover,resize,reset,tap,wheel_zoom'
p = figure(width=1200, height=900, x_axis_type="datetime", tools=_tools_to_show)
# FIRST plot ALL lines (This is a hack to get it working, why can't i pass in a dataframe to multi_line?)
# It's not pretty but it works.
# what I want to do!: p.multi_line(df)
ts_list_of_list = []
for i in range(0,len(toy_df.columns)):
ts_list_of_list.append(toy_df.index.T)
vals_list_of_list = toy_df.values.T.tolist()
# Define colors because otherwise multi_line will use blue for all lines...
cols_to_use = ['Black', 'Red', 'Lime']
p.multi_line(ts_list_of_list, vals_list_of_list, line_color=cols_to_use)
# THEN put scatter one at a time on top of each one to get tool tips (HACK! lines with tooltips not yet supported by Bokeh?)
for (name, series) in toy_df.iteritems():
# need to repmat the name to be same dimension as index
name_for_display = np.tile(name, [len(toy_df.index),1])
source = ColumnDataSource({'x': toy_df.index, 'y': series.values, 'series_name': name_for_display, 'Date': toy_df.index.format()})
# trouble formating x as datestring, so pre-formating and using an extra column. It's not pretty but it works.
p.scatter('x', 'y', source = source, fill_alpha=0, line_alpha=0.3, line_color="grey")
hover = p.select(dict(type=HoverTool))
hover.tooltips = [("Series", "#series_name"), ("Date", "#Date"), ("Value", "#y{0.00%}"),]
hover.mode = 'mouse'
show(p)
I’m not familiar with Pandas,I just use python list to show the very example of how to add tooltips to muti_lines, show series names ,and properly display date/time。Below is the result.
Thanks to #bs123's answer and #tterry's answer in Bokeh Plotting: Enable tooltips for only some glyphs
my result
# -*- coding: utf-8 -*-
from bokeh.plotting import figure, output_file, show, ColumnDataSource
from bokeh.models import HoverTool
from datetime import datetime
dateX_str = ['2016-11-14','2016-11-15','2016-11-16']
#conver the string of datetime to python datetime object
dateX = [datetime.strptime(i, "%Y-%m-%d") for i in dateX_str]
v1= [10,13,5]
v2 = [8,4,14]
v3= [14,9,6]
v = [v1,v2,v3]
names = ['v1','v2','v3']
colors = ['red','blue','yellow']
output_file('example.html',title = 'example of add tooltips to multi_timeseries')
tools_to_show = 'hover,box_zoom,pan,save,resize,reset,wheel_zoom'
p = figure(x_axis_type="datetime", tools=tools_to_show)
#to show the tooltip for multi_lines,you need use the ColumnDataSource which define the data source of glyph
#the key is to use the same column name for each data source of the glyph
#so you don't have to add tooltip for each glyph,the tooltip is added to the figure
#plot each timeseries line glyph
for i in xrange(3):
# bokeh can't show datetime object in tooltip properly,so we use string instead
source = ColumnDataSource(data={
'dateX': dateX, # python datetime object as X axis
'v': v[i],
'dateX_str': dateX_str, #string of datetime for display in tooltip
'name': [names[i] for n in xrange(3)]
})
p.line('dateX', 'v',source=source,legend=names[i],color = colors[i])
circle = p.circle('dateX', 'v',source=source, fill_color="white", size=8, legend=names[i],color = colors[i])
#to avoid some strange behavior(as shown in the picture at the end), only add the circle glyph to the renders of hover tool
#so tooltip only takes effect on circle glyph
p.tools[0].renderers.append(circle)
# show the tooltip
hover = p.select(dict(type=HoverTool))
hover.tooltips = [("value", "#v"), ("name", "#name"), ("date", "#dateX_str")]
hover.mode = 'mouse'
show(p)
tooltips with some strange behavior,two tips displayed at the same time
Here is my solution. I inspected the glyph render data source to see what are the names on it. Then I use those names on the hoover tooltips. You can see the resulting plot here.
import numpy as np
from bokeh.charts import TimeSeries
from bokeh.models import HoverTool
from bokeh.plotting import show
toy_df = pd.DataFrame(data=np.random.rand(5,3), columns = ('a', 'b' ,'c'), index = pd.DatetimeIndex(start='01-01-2015',periods=5, freq='d'))
#Bockeh display dates as numbers so convert to string tu show correctly
toy_df.index = toy_df.index.astype(str)
p = TimeSeries(toy_df, tools='hover')
#Next 3 lines are to inspect how are names on gliph to call them with #name on hover
#glyph_renderers = p.select(dict(type=GlyphRenderer))
#bar_source = glyph_renderers[0].data_source
#print(bar_source.data) #Here we can inspect names to call on hover
hover = p.select(dict(type=HoverTool))
hover.tooltips = [
("Series", "#series"),
("Date", "#x_values"),
("Value", "#y_values"),
]
show(p)
The original poster's code doesn't work with the latest pandas (DatetimeIndex constructor has changed), but Hovertool now supports a formatters attribute that lets you specify a format as a strftime string. Something like
fig.add_tool(HoverTool(
tooltip=[
('time', '#index{%Y-%m-%d}')
],
formatters={
'#index': 'datetime'
}
))

Resources