What is Swift 4.1.50? - swift4.1

I'm playing around with the Xcode 10 beta, and I noticed while doing compile-time checks of the Swift version number that projects with the Swift Language Version set to Swift 4 in their Build Settings are reporting as Swift 4.1.50 (betas 2, 3, and 4 do this; I didn't get a chance to test beta 1). This strikes me as... bizarre, to say the least. The current AppStore version of Xcode, Xcode 9.4.1, reports its version as Swift 4.1.2.
So... What happened to Swift 4.1.3 through 4.1.49? Or is this a bug that I should file? Or is the 50 significant in some way?
You can test this yourself with my test file, Swift Version Checker

According to Jordan Rose on the Swift bug tracker:
This is the least bad answer we could come up with, given that we may still release more 4.1.x versions if there's, say, a bad security vulnerability in one of them. (This has happened before.) We needed a version number that was greater than any existing 4.1 version, but still less than 4.2.
We did consider other ideas, but this is the one we went with for maximum compatibility. We at least won't have this problem in the future thanks to SE-0212.
So, what I take from this is that there might still have to be an actual 4.1 release sometime in the future, but that would just be a security patch atop 4.1.2, so the logical number for that would be 4.1.3. Meanwhile, the pseudo-4.1 Swift that the Swift 4.2 compiler can digest needs its own number that also reflects it's a dialect of 4.1, and their conclusion was 4.1.50, which is safely far enough away from 4.1.2 to allow for as many security patches as they want.

Related

Why isn't invokedynamic the default in Groovy?

Groovy added the --indy option in version 2.0, back in 2012. It wasn't the default at the time because invoke dynamic required Java 7, and many people at the time used Java 6.
Now even the forthcoming Groovy 3.0 still requires the --indy option in order to force it to use invoke dynamic. That's in spite of the fact Groovy 3.0 requires Java 8 or later.
Is there any technical advantage in still having the default be non-indy compilation, and the default run-time libraries being non-indy? I would have thought there's no need to even have a non-indy option nowadays.
Having --indy by default is on the roadmap for Groovy 3.0 (currently in alpha). The team wanted feedback on the new parser so didn't wait for all features to be available before releasing alpha versions.
The Groovy 3.0 compiler will likely keep a non-indy option of some kind available for a version or two to assist people wanting to recompile old libraries and produce like-for-like bytecode.
Currently, there are some primitive handling optimisations in play when producing non-indy bytecode. Very early benchmarks (on quite old JVMs now) showed some performance regressions since the indy bytecode didn't have those same optimisations. Also on the roadmap for 3.0 is to re-look at performance in those specific cases with a view to considering possible optimisations if still needed.
Exact specifics of whether some non-indy jars will be required for a version or two depend on some other parallel changes to remove some legacy classes that aren't really needed for the indy case but which would be required for all existing libraries written in Groovy to run. That will be detailed in the documentation and release notes once finalised.
There are some more details in [1].
[1] http://groovy.markmail.org/thread/yxeflplf5sr2wfqp

Reason for MINOR vs PATCH rules in SemVer

The rules for when to increase the MAJOR vs the MINOR version number with SemVer 2.0 are very compelling. They clearly give a lot of advantages to knowing if the app/service is backwards compatible.
But the site does not really give an reason for the differences between a MINOR and what it calls a PATCH. I don't see it giving the same benefits of MAJOR vs MINOR.
For reference here are the SemVer rules:
MAJOR version when you make incompatible API changes,
MINOR version when you add functionality in a backwards-compatible manner, and
PATCH version when you make backwards-compatible bug fixes.
So the only difference between MINOR and PATCH is features vs bug fixes. My company wants to do that differently.
They want to have MINOR be a collection of [backwards compatible] features. "PATCH" (which we call Incremental) be the releases needed to get those features out. (We release bug fixes as we release features.)
For example, if we plan for 7 [backwards compatible] features in our 2.4 release then 2.4.0 may have 2 of the features, 2.4.1 would have 3 more features and 2.4.2 would have the last 2 (perhaps with a bug fix or two in each release).
I can see that this violates SemVer, but I need to know why SemVer has decided to be prescriptive on the differences between the MINOR and PATCH versions so I can know which way to push my company.
NOTE: I hope that this is not too subjective for Stack Overflow. I don't usually ask questions like this, so it is possible that this question will need to be closed...
The standard is deliberately terse. There's nothing in it that prevents you from releasing a bunch of bug fixes along with your new features and you only have to bump the minor field when you do this. If the changes only involve bug fixes, refactoring or documentation that does not add, remove or modify any interface, then you only bump the patch. The whole point is to communicate to your consumers, their level of risk when taking an update from you.
EDIT:
It is a best practice to separate bug fixes (patches) from feature work (minor) and breaking changes (major), into separate releases. This allows your consumers to automatically pick up the latest fixes, without having to deal with feature bloat or breaking changes.
For example, if we plan for 7 [backwards compatible] features in our 2.4 release then 2.4.0 may have 2 of the features, 2.4.1 would have 3 more features and 2.4.2 would have the last 2 (perhaps with a bug fix or two in each release).
Nothing stops you following SemVer convention and release 2.4.0 with 2 features, 2.5.0 with 3 more features and 2.6.0 with last 2 features and a few bug fixes for previously released features.
It is better to follow some common convention instead of reinventing the wheel. You save time thinking, discussing and documenting a custom solution as well as avoid confusion within the team and newcomers.
https://semver.org/

When using semver when to upgrade/bump to 1.0.0 (stable)

The Semantic Versioning Specification (SemVer) defines:
Major version zero (0.y.z) is for initial development. Anything may change at any time. The public API should not be considered stable.
So starting with 1.0.0 is considered stable.
When starting a project normally version 0.1.0 is used and gradually increased, there is a point where the project can have something like 0.20.3 for months/years and it is "stable".
Therefore would like to know what could be considered good practices to follow besides the criteria, arguments before bumping a project to server 1.0.0.
How you are dealing with this?
If there are not issues/code activity in 3 months the version is dumped?
The development team decides when they have version 1.0.0. It is possible for a project to remain in experimental/prototype mode for very long periods of time. The only thing that matters here is whether the interface and implementation can be considered complete or not. What are your goals? Do you have all the planned v1 features in place? Do you have doubts w.r.t. implementation conformance to the documented interface?
Some teams don't have workflows that map onto the full semver spec, but they use packaging/release tooling that requires a semver version string. In order to be legal, they never release version 1.0.0, so any version bumps literally don't have full SemVer semantics. See #4 in the spec.
When I see SomeLib.0.20.3.pkg I assume it is not stable. A breaking change can occur on the very next minor field bump, whether or not there have ever been any such changes in the past. SemVer is a contract that allows the SomeLib developers to break things without notice in this particular case.
There is nothing in the spec that precludes a team from issuing a 1.0.0 and then returning to a long sequence of 0.x.x releases if they so desire to operate that way. This is similar to, but not exactly the same as using prerelease tags. When you issue 1.0.1-prerelease you are at least implying intent to release a work derived from 1.0.0 that is a bug-fix, but the prerelease tag is warning label that you are not yet certain of the safety of the changes you made. Following on from 1.0.0 to a sequence of 0.x.x releases says you might not even be deriving from 1.0.0 anymore. Basically, all bets are off again.
If you require any further elucidation on this matter, please ask, I am happy to try to answer any questions regarding SemVer.

How to upgrade from Antlr4 4.2 (C#) to latest verion (4.4?)

On the ANTLR download page it states that the latest version of ANTLR is 4.4. From the C# Target section on the same page, clicking "ANTLR 4 C# Target (Latest Release)" brings me to the 4.3 Target Release GitHub page that has a link for Readme.md, which when clicked, results in a 404.
Question 1: Although the download page states that the latest version for C# 4.4, the version I get via NuGet is 4.3. Does this mean 4.4 isn't available for C#?
Question 2: Where do I find the tools for code generation that correspond to the version I got from NuGet (that is, Antlr 4.3)?
We attempted using antlr-4.4-complete.jar for code generation - we substituted that jar for the previous (antlr4-csharp-4.0.1-SNAPSHOT-complete.jar) in our build script and now we get: "error(31): ANTLR cannot generate CSharp_v4_5 code as of version 4.4" (which we didn't get previously). We also tried antlr-4.3-complete.jar and got similar results.
What do we need to take advantage of the latest release?
First of all, I corrected the link to the Readme.md in the release notes. Thanks for pointing it out, although a more reliable way to notify the maintainer is to file an issue directly for the project.
Second, the C# target is not based on the version of ANTLR posted on antlr.org, but instead on a fork of the project I created to optimize performance and (especially) memory overhead associated with parsing highly complex grammars. The tools use different serialization formats and are not interchangeable.
The C# code generator is distributed via NuGet, as described in the readme file.
ANTLR 4.4's primary differences over ANTLR 4.3 are the following:
Inclusion of additional targets (irrelevant for the C# target, since the runtime libraries are not C# and also use the other serialization format)
A bug-fix in the tool that has minimal effect on users (it throws an exception instead of reporting an error at code generation time for a specific type of grammar error)
Fixes a bug that occurs when an unknown target is specified (also not applicable to the C# target, since the MSBuild integration automatically selects the correct target language)
Based on this, the 4.3 release of the C# target is functionally equivalent to 4.4. I'm waiting to release a "4.4" version until I can address other performance concerns and functionality which doesn't apply to the reference version. In particular, I'm working on the following:
Improving concurrency by reducing contention (sharwell/antlr4#13)
Supporting indirect left recursion (currently a work-in-progress in the indirect-lr and java8-grammar branches)
Supporting a new baseContext option, shown here for a Java 8 grammar

Getting software version numbers right. v1.0.0.1 [closed]

Closed. This question is opinion-based. It is not currently accepting answers.
Want to improve this question? Update the question so it can be answered with facts and citations by editing this post.
Closed 6 years ago.
Improve this question
I distribute software online, and always wonder if there is a proper way to better define version numbers.
Let's assume A.B.C.D in the answers. When do you increase each of the components?
Do you use any other version number tricks such as D mod 2 == 1 means it is an in house release only?
Do you have beta releases with their own version numbers, or do you have beta releases per version number?
I'm starting to like the Year.Release[.Build] convention that some apps (e.g. Perforce) use. Basically it just says the year in which you release, and the sequence within that year. So 2008.1 would be the first version, and if you released another a months or three later, it would go to 2008.2.
The advantage of this scheme is there is no implied "magnitude" of release, where you get into arguments about whether a feature is major enough to warrant a major version increment or not.
An optional extra is to tag on the build number, but that tends to be for internal purposes only (e.g. added to the EXE/DLL so you can inspect the file and ensure the right build is there).
In my opinion, almost any release number scheme can be made to work more or less sanely. The system I work on uses version numbers such as 11.50.UC3, where the U indicates 32-bit Unix, and the C3 is a minor revision (fix pack) number; other letters are used for other platform types. (I'd not recommend this scheme, but it works.)
There are a few golden rules which have not so far been stated, but which are implicit in what people have discussed.
Do not release the same version twice - once version 1.0.0 is released to anyone, it can never be re-released.
Release numbers should increase monotonically. That is, the code in version 1.0.1 or 1.1.0 or 2.0.0 should always be later than version 1.0.0, 1.0.9, or 1.4.3 (respectively).
Now, in practice, people do have to release fixes for older versions while newer versions are available -- see GCC, for example:
GCC 3.4.6 was released after 4.0.0, 4.1.0 (and AFAICR 4.2.0), but it continues the functionality of GCC 3.4.x rather than adding the extra features added to GCC 4.x.
So, you have to build your version numbering scheme carefully.
One other point which I firmly believe in:
The release version number is unrelated to the CM (VCS) system version numbering, except for trivial programs. Any serious piece of software with more than one main source file will have a version number unrelated to the version of any single file.
With SVN, you could use the SVN version number - but probably wouldn't as it changes too unpredictably.
For the stuff I work with, the version number is a purely political decision.
Incidentally, I know of software that went through releases from version 1.00 through 9.53, but that then changed to 2.80. That was a gross mistake - dictated by marketing. Granted, version 4.x of the software is/was obsolete, so it didn't immediately make for confusion, but version 5.x of the software is still in use and sold, and the revisions have already reached 3.50. I'm very worried about what my code that has to work with both the 5.x (old style) and 5.x (new style) is going to do when the inevitable conflict occurs. I guess I have to hope that they will dilly-dally on changing to 5.x until the old 5.x really is dead -- but I'm not optimistic. I also use an artificial version number, such as 9.60, to represent the 3.50 code, so that I can do sane if VERSION > 900 testing, rather than having to do: if (VERSION >= 900 || (VERSION >= 280 && VERSION < 400), where I represent version 9.00 by 900. And then there's the significant change introduced in version 3.00.xC3 -- my scheme fails to detect changes at the minor release level...grumble...grumble...
NB: Eric Raymond provides Software Release Practice HOWTO including the (linked) section on naming (numbering) releases.
I usually use D as a build counter (automatic increment by compiler)
I increment C every time a build is released to "public" (not every build is released)
A and B are used as major/minor version number and changed manually.
I think there are two ways to answer this question, and they are not entirely complimentary.
Technical: Increment versions based on technical tasks. Example: D is build number, C is Iteration, B is a minor release, A is a major release. Defining minor and major releases is really subjective, but could be related things like changes to underlying architecture.
Marketing: Increment versions based on how many "new" or "useful" features are being provided to your customers. You may also tie the version numbers to an update policy...Changes to A require the user to purchase an upgrade license, whereas other changes do not.
The bottom line, I think, is finding a model that works for you and your customers. I've seen some cases where even versions are public releases, and odd versions are considered beta, or dev releases. I've seen some products which ignore C and D all together.
Then there is the example from Micrsoft, where the only rational explanation to the version numbers for the .Net Framework is that Marketing was involved.
Our policy:
A - Significant (> 25%) changes or
additions in functionality or
interface.
B - small changes or
additions in functionality or
interface.
C - minor changes that
break the interface.
D - fixes to a
build that do not change the
interface.
People tend to want to make this much harder than it really needs to be. If your product has only a single long-lived branch, just name successive versions by their build number. If you've got some kind of "minor bug fixes are free, but you have to pay for major new versions", then use 1.0, 1.1 ... 1.n, 2.0, 2.1... etc.
If you can't immediately figure out what the A,B,C, and D in your example are, then you obviously don't need them.
The only use I have ever made of the version number was so that a customer could tell me they're using version 2.5.1.0 or whatever.
My only rule is designed to minimize mistakes in reporting that number: all four numbers have to be 1 digit only.
1.1.2.3
is ok, but
1.0.1.23
is not. Customers are likely to report both numbers (verbally, at least) as "one-one-two-three".
Auto-incrementing build numbers often results in version numbers like
1.0.1.12537
which doesn't really help, either.
A good and non-technical scheme just uses the build date in this format:
YYYY.MM.DD.BuildNumber
Where BuildNumber is either a continuous number (changelist) or just starts over at 1 each day.
Examples: 2008.03.24.1 or 2008.03.24.14503
This is mainly for internal releases, public releases would see the version printed as 2008.03 if you don't release more often than once a month. Maintenance releases get flagged as 2008.03a 2008.03b and so on. They should rarely go past "c" but if it does it's a good indicator you need better QA and/or testing procedures.
Version fields that are commonly seen by the user should be printed in a friendly "March 2008" format, reserve the more technical info in the About dialog or log files.
Biggest disadvantage: just compiling the same code on another day might change the version number. But you can avoid this by using the version control changelist as last number and checking against that to determine if the date needs to be changed as well.
In the github world, it has become popular to follow Tom Preston-Werner's "semver" spec for version numbers.
From http://semver.org/ :
Given a version number MAJOR.MINOR.PATCH, increment the:
MAJOR version when you make incompatible API changes, MINOR version
when you add functionality in a backwards-compatible manner, and PATCH
version when you make backwards-compatible bug fixes. Additional
labels for pre-release and build metadata are available as extensions
to the MAJOR.MINOR.PATCH format.
I use V.R.M e.g. 2.5.1
V (version) changes are a major rewrite
R (revision) changes are significant new features or bug fixes
M (modification) changes are minor bux fixes (typos, etc)
I sometimes use an SVN commit number on the end too.
Its all really subjective at the end of the day and simply up to yourself/your team.
Just take a look at all the answers already - all very different.
Personally I use Major.Minor.*.* - Where Visual Studio fills in the revison/build number automatically. This is used where I work too.
I like Year.Month.Day. So, v2009.6.8 would be the "version" of this post. It is impossible to duplicate (reasonably) and it very clear when something is a newer release. You could also drop the decimals and make it v20090608.
In the case of a library, the version number tells you about the level of compatibility between two releases, and thus how difficult an upgrade will be.
A bug fix release needs to preserve binary, source, and serialization compatibility.
Minor releases mean different things to different projects, but usually they don't need to preserve source compatibility.
Major version numbers can break all three forms.
I wrote more about the rationale here.
For in-house development, we use the following format.
[Program #] . [Year] . [Month] . [Release # of this app within the month]
For example, if I'm releasing application # 15 today, and it's the third update this month, then my version # will be
15.2008.9.3
It's totally non-standard, but it is useful for us.
For the past six major versions, we've used M.0.m.b where M is the major version, m is the minor version, and b is the build number. So released versions included 6.0.2, 7.0.1, ..., up to 11.0.0. Don't ask why the second number is always 0; I've asked a number of times and nobody really knows. We haven't had a non-zero there since 5.5 was released in 1996.

Resources