Stop axis from expanding matplotlib - python-3.x

I've been using the code from the site bellow to create and use check buttons for my subplot lines:
https://matplotlib.org/gallery/widgets/check_buttons.html
But i can't seem to keep the check button axes (rax) from expanding when i pull on the margins of the figure window, i would like only the plot with lines to expand. I've tried this but it doesn't seem to do the job:
t = np.arange(0.0, 2.0, 0.01)
s0 = np.sin(2*np.pi*t)
s1 = np.sin(4*np.pi*t)
s2 = np.sin(6*np.pi*t)
fig, ax = plt.subplots()
l0, = ax.plot(t, s0, visible=False, lw=2, color='k', label='2 Hz')
l1, = ax.plot(t, s1, lw=2, color='r', label='4 Hz')
l2, = ax.plot(t, s2, lw=2, color='g', label='6 Hz')
plt.subplots_adjust(left=0.2)
lines = [l0, l1, l2]
rax = plt.axes([0.05, 0.4, 0.1, 0.15])
rax.autoscale(enable=FALSE, tight=TRUE) #this is the part i don't want expanding
labels = [str(line.get_label()) for line in lines]
visibility = [line.get_visible() for line in lines]
check = CheckButtons(rax, labels, visibility)
def func(label):
index = labels.index(label)
lines[index].set_visible(not lines[index].get_visible())
plt.draw()
check.on_clicked(func)
plt.show()
Is there a way the do this?
Thanks!

The question can be translated into how to position an axes in figure coordinates with a fixed width and height in absolute (pixel) coordinates. This can be done via setting the axes locator to a
mpl_toolkits.axes_grid1.inset_locator.AnchoredSizeLocator via ax.set_axes_locator.
import matplotlib.pyplot as plt
import matplotlib.transforms as mtrans
from mpl_toolkits.axes_grid1.inset_locator import AnchoredSizeLocator
fig, ax = plt.subplots()
# Create axes, which is positionned in figure coordinates,
# with width and height fixed in inches.
# axes extent in figure coordinates (width & height ignored)
axes_extent = [0.03, 0.5, 0, 0]
# add axes to figure
rax = fig.add_axes(axes_extent)
# create locator: Position at (0.03, 0.5) in figure coordinates,
# 0.7 inches wide and tall, pinned at left center of bbox.
axes_locator = AnchoredSizeLocator(mtrans.Bbox.from_bounds(*axes_extent),
.7, .7, loc="center left",
bbox_transform=fig.transFigure,
borderpad=0)
rax.set_axes_locator(axes_locator)
Now, when the figure size changes, the axes will stay at the same relative position without changing its width and height.

Related

Is it possible to set (in `matplotlib`) `ax.grid` in such a way that lines will go just to bars instead of going by the whole chart?

Is it possible to set ax.grid in such a way that lines will go just to bars?
Below the regular output("before") and expected("after"):
My code:
fig, ax = plt.subplots(figsize=(15,6))
ax.set_axisbelow(True)
ax = data_test.bar(fontsize=15, zorder=1, color=(174/255, 199/255, 232/255)) # 'zorder' is bar layaut order
for p in ax.patches:
ax.annotate(s=p.get_height(),
xy=(p.get_x()+p.get_width()/2., p.get_height()),
ha='center',
va='center',
xytext=(0, 10),
textcoords='offset points')
ax.spines["right"].set_visible(False)
ax.spines["left"].set_visible(False)
ax.spines["top"].set_visible(False)
ax.spines["bottom"].set_visible(False)
ax.set_xticklabels(
data_test.index,
rotation=34.56789,
fontsize='xx-large'
) # We will set xticklabels in angle to be easier to read)
# The labels are centred horizontally, so when we rotate them 34.56789°
ax.grid(axis='y', zorder=0) # 'zorder' is bar layaut order
plt.ylim([4500, 5300])
plt.show()
You could draw horizontal lines instead of using grid lines.
You forgot to add test data, making it quite unclear of what type data_test could be.
The code below supposes data_test is a pandas dataframe, and that data_test.plot.bar() is called to draw a bar plot. Note that since matplotlib 3.4 you can use ax.bar_label to label bars.
from matplotlib import pyplot as plt
import pandas as pd
import numpy as np
data_test = pd.DataFrame({'height': np.random.randint(1000, 2000, 7).cumsum()},
index=['Alkaid', 'Mizar', 'Alioth', 'Megrez', 'Phecda', 'Merak', 'Dubhe'])
fig, ax = plt.subplots(figsize=(15, 6))
ax.set_axisbelow(True)
data_test.plot.bar(fontsize=15, zorder=1, color=(174 / 255, 199 / 255, 232 / 255), ax=ax)
for container in ax.containers:
ax.bar_label(container, fmt='%.0f', fontsize=15)
for spine in ax.spines.values():
spine.set_visible(False)
ax.set_xticklabels(data_test.index, rotation=34.56789, fontsize='xx-large')
ax.tick_params(length=0) # remove tick marks
xmin, xmax = ax.get_xlim()
ticks = ax.get_yticks()
tick_extends = [xmax] * len(ticks)
# loop through the bars and the ticks; shorten the lines whenever a bar crosses it
for bar in ax.patches:
for j, tick in enumerate(ticks):
if tick <= bar.get_height():
tick_extends[j] = min(tick_extends[j], bar.get_x())
ax.hlines(ticks, xmin, tick_extends, color='grey', lw=0.8, ls=':', zorder=0)
plt.tight_layout()
plt.show()

Common X and Y axis lable for all subplots in the case of sns.lineplot and axhline? [duplicate]

I have the following plot:
import matplotlib.pyplot as plt
fig2 = plt.figure()
ax3 = fig2.add_subplot(2,1,1)
ax4 = fig2.add_subplot(2,1,2)
ax4.loglog(x1, y1)
ax3.loglog(x2, y2)
ax3.set_ylabel('hello')
I want to be able to create axes labels and titles not just for each of the two subplots, but also common labels that span both subplots. For example, since both plots have identical axes, I only need one set of x and y- axes labels. I do want different titles for each subplot though.
I tried a few things but none of them worked right
You can create a big subplot that covers the two subplots and then set the common labels.
import random
import matplotlib.pyplot as plt
x = range(1, 101)
y1 = [random.randint(1, 100) for _ in range(len(x))]
y2 = [random.randint(1, 100) for _ in range(len(x))]
fig = plt.figure()
ax = fig.add_subplot(111) # The big subplot
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
# Turn off axis lines and ticks of the big subplot
ax.spines['top'].set_color('none')
ax.spines['bottom'].set_color('none')
ax.spines['left'].set_color('none')
ax.spines['right'].set_color('none')
ax.tick_params(labelcolor='w', top=False, bottom=False, left=False, right=False)
ax1.loglog(x, y1)
ax2.loglog(x, y2)
# Set common labels
ax.set_xlabel('common xlabel')
ax.set_ylabel('common ylabel')
ax1.set_title('ax1 title')
ax2.set_title('ax2 title')
plt.savefig('common_labels.png', dpi=300)
Another way is using fig.text() to set the locations of the common labels directly.
import random
import matplotlib.pyplot as plt
x = range(1, 101)
y1 = [random.randint(1, 100) for _ in range(len(x))]
y2 = [random.randint(1, 100) for _ in range(len(x))]
fig = plt.figure()
ax1 = fig.add_subplot(211)
ax2 = fig.add_subplot(212)
ax1.loglog(x, y1)
ax2.loglog(x, y2)
# Set common labels
fig.text(0.5, 0.04, 'common xlabel', ha='center', va='center')
fig.text(0.06, 0.5, 'common ylabel', ha='center', va='center', rotation='vertical')
ax1.set_title('ax1 title')
ax2.set_title('ax2 title')
plt.savefig('common_labels_text.png', dpi=300)
One simple way using subplots:
import matplotlib.pyplot as plt
fig, axes = plt.subplots(3, 4, sharex=True, sharey=True)
# add a big axes, hide frame
fig.add_subplot(111, frameon=False)
# hide tick and tick label of the big axes
plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)
plt.grid(False)
plt.xlabel("common X")
plt.ylabel("common Y")
New in matplotlib 3.4.0
There are now built-in methods to set common axis labels:
supxlabel
fig.supxlabel('common x label')
supylabel
fig.supylabel('common y label')
To reproduce OP's loglog plots (common labels but separate titles):
x = np.arange(0.01, 10.01, 0.01)
y = 2 ** x
fig, (ax1, ax2) = plt.subplots(2, 1, constrained_layout=True)
ax1.loglog(y, x)
ax2.loglog(x, y)
# separate subplot titles
ax1.set_title('ax1.title')
ax2.set_title('ax2.title')
# common axis labels
fig.supxlabel('fig.supxlabel')
fig.supylabel('fig.supylabel')
plt.setp() will do the job:
# plot something
fig, axs = plt.subplots(3,3, figsize=(15, 8), sharex=True, sharey=True)
for i, ax in enumerate(axs.flat):
ax.scatter(*np.random.normal(size=(2,200)))
ax.set_title(f'Title {i}')
# set labels
plt.setp(axs[-1, :], xlabel='x axis label')
plt.setp(axs[:, 0], ylabel='y axis label')
Wen-wei Liao's answer is good if you are not trying to export vector graphics or that you have set up your matplotlib backends to ignore colorless axes; otherwise the hidden axes would show up in the exported graphic.
My answer suplabel here is similar to the fig.suptitle which uses the fig.text function. Therefore there is no axes artist being created and made colorless.
However, if you try to call it multiple times you will get text added on top of each other (as fig.suptitle does too). Wen-wei Liao's answer doesn't, because fig.add_subplot(111) will return the same Axes object if it is already created.
My function can also be called after the plots have been created.
def suplabel(axis,label,label_prop=None,
labelpad=5,
ha='center',va='center'):
''' Add super ylabel or xlabel to the figure
Similar to matplotlib.suptitle
axis - string: "x" or "y"
label - string
label_prop - keyword dictionary for Text
labelpad - padding from the axis (default: 5)
ha - horizontal alignment (default: "center")
va - vertical alignment (default: "center")
'''
fig = pylab.gcf()
xmin = []
ymin = []
for ax in fig.axes:
xmin.append(ax.get_position().xmin)
ymin.append(ax.get_position().ymin)
xmin,ymin = min(xmin),min(ymin)
dpi = fig.dpi
if axis.lower() == "y":
rotation=90.
x = xmin-float(labelpad)/dpi
y = 0.5
elif axis.lower() == 'x':
rotation = 0.
x = 0.5
y = ymin - float(labelpad)/dpi
else:
raise Exception("Unexpected axis: x or y")
if label_prop is None:
label_prop = dict()
pylab.text(x,y,label,rotation=rotation,
transform=fig.transFigure,
ha=ha,va=va,
**label_prop)
Here is a solution where you set the ylabel of one of the plots and adjust the position of it so it is centered vertically. This way you avoid problems mentioned by KYC.
import numpy as np
import matplotlib.pyplot as plt
def set_shared_ylabel(a, ylabel, labelpad = 0.01):
"""Set a y label shared by multiple axes
Parameters
----------
a: list of axes
ylabel: string
labelpad: float
Sets the padding between ticklabels and axis label"""
f = a[0].get_figure()
f.canvas.draw() #sets f.canvas.renderer needed below
# get the center position for all plots
top = a[0].get_position().y1
bottom = a[-1].get_position().y0
# get the coordinates of the left side of the tick labels
x0 = 1
for at in a:
at.set_ylabel('') # just to make sure we don't and up with multiple labels
bboxes, _ = at.yaxis.get_ticklabel_extents(f.canvas.renderer)
bboxes = bboxes.inverse_transformed(f.transFigure)
xt = bboxes.x0
if xt < x0:
x0 = xt
tick_label_left = x0
# set position of label
a[-1].set_ylabel(ylabel)
a[-1].yaxis.set_label_coords(tick_label_left - labelpad,(bottom + top)/2, transform=f.transFigure)
length = 100
x = np.linspace(0,100, length)
y1 = np.random.random(length) * 1000
y2 = np.random.random(length)
f,a = plt.subplots(2, sharex=True, gridspec_kw={'hspace':0})
a[0].plot(x, y1)
a[1].plot(x, y2)
set_shared_ylabel(a, 'shared y label (a. u.)')
# list loss and acc are your data
fig = plt.figure()
ax1 = fig.add_subplot(121)
ax2 = fig.add_subplot(122)
ax1.plot(iteration1, loss)
ax2.plot(iteration2, acc)
ax1.set_title('Training Loss')
ax2.set_title('Training Accuracy')
ax1.set_xlabel('Iteration')
ax1.set_ylabel('Loss')
ax2.set_xlabel('Iteration')
ax2.set_ylabel('Accuracy')
The methods in the other answers will not work properly when the yticks are large. The ylabel will either overlap with ticks, be clipped on the left or completely invisible/outside of the figure.
I've modified Hagne's answer so it works with more than 1 column of subplots, for both xlabel and ylabel, and it shifts the plot to keep the ylabel visible in the figure.
def set_shared_ylabel(a, xlabel, ylabel, labelpad = 0.01, figleftpad=0.05):
"""Set a y label shared by multiple axes
Parameters
----------
a: list of axes
ylabel: string
labelpad: float
Sets the padding between ticklabels and axis label"""
f = a[0,0].get_figure()
f.canvas.draw() #sets f.canvas.renderer needed below
# get the center position for all plots
top = a[0,0].get_position().y1
bottom = a[-1,-1].get_position().y0
# get the coordinates of the left side of the tick labels
x0 = 1
x1 = 1
for at_row in a:
at = at_row[0]
at.set_ylabel('') # just to make sure we don't and up with multiple labels
bboxes, _ = at.yaxis.get_ticklabel_extents(f.canvas.renderer)
bboxes = bboxes.inverse_transformed(f.transFigure)
xt = bboxes.x0
if xt < x0:
x0 = xt
x1 = bboxes.x1
tick_label_left = x0
# shrink plot on left to prevent ylabel clipping
# (x1 - tick_label_left) is the x coordinate of right end of tick label,
# basically how much padding is needed to fit tick labels in the figure
# figleftpad is additional padding to fit the ylabel
plt.subplots_adjust(left=(x1 - tick_label_left) + figleftpad)
# set position of label,
# note that (figleftpad-labelpad) refers to the middle of the ylabel
a[-1,-1].set_ylabel(ylabel)
a[-1,-1].yaxis.set_label_coords(figleftpad-labelpad,(bottom + top)/2, transform=f.transFigure)
# set xlabel
y0 = 1
for at in axes[-1]:
at.set_xlabel('') # just to make sure we don't and up with multiple labels
bboxes, _ = at.xaxis.get_ticklabel_extents(fig.canvas.renderer)
bboxes = bboxes.inverse_transformed(fig.transFigure)
yt = bboxes.y0
if yt < y0:
y0 = yt
tick_label_bottom = y0
axes[-1, -1].set_xlabel(xlabel)
axes[-1, -1].xaxis.set_label_coords((left + right) / 2, tick_label_bottom - labelpad, transform=fig.transFigure)
It works for the following example, while Hagne's answer won't draw ylabel (since it's outside of the canvas) and KYC's ylabel overlaps with the tick labels:
import matplotlib.pyplot as plt
import itertools
fig, axes = plt.subplots(3, 4, sharey='row', sharex=True, squeeze=False)
fig.subplots_adjust(hspace=.5)
for i, a in enumerate(itertools.chain(*axes)):
a.plot([0,4**i], [0,4**i])
a.set_title(i)
set_shared_ylabel(axes, 'common X', 'common Y')
plt.show()
Alternatively, if you are fine with colorless axis, I've modified Julian Chen's solution so ylabel won't overlap with tick labels.
Basically, we just have to set ylims of the colorless so it matches the largest ylims of the subplots so the colorless tick labels sets the correct location for the ylabel.
Again, we have to shrink the plot to prevent clipping. Here I've hard coded the amount to shrink, but you can play around to find a number that works for you or calculate it like in the method above.
import matplotlib.pyplot as plt
import itertools
fig, axes = plt.subplots(3, 4, sharey='row', sharex=True, squeeze=False)
fig.subplots_adjust(hspace=.5)
miny = maxy = 0
for i, a in enumerate(itertools.chain(*axes)):
a.plot([0,4**i], [0,4**i])
a.set_title(i)
miny = min(miny, a.get_ylim()[0])
maxy = max(maxy, a.get_ylim()[1])
# add a big axes, hide frame
# set ylim to match the largest range of any subplot
ax_invis = fig.add_subplot(111, frameon=False)
ax_invis.set_ylim([miny, maxy])
# hide tick and tick label of the big axis
plt.tick_params(labelcolor='none', top=False, bottom=False, left=False, right=False)
plt.xlabel("common X")
plt.ylabel("common Y")
# shrink plot to prevent clipping
plt.subplots_adjust(left=0.15)
plt.show()
You could use "set" in axes as follows:
axes[0].set(xlabel="KartalOl", ylabel="Labeled")

How to use `extent` in matplotlib ax.imshow() without changing the positions of the overlayed ax.text() handles?

I am trying to annotate a heatmap. The matplotlib docs present an example, which suggests creating a helper function to format the annotations. I feel there must be a simpler way to do what I want. I can annotate inside the boxes of the heatmap, but these texts change position when editing the extent of the heatmap. My question is how to use extent in ax.imshow(...) while also using ax.text(...) to annotate the correct positions. Below is an example:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import Normalize
def get_manhattan_distance_matrix(coordinates):
shape = (coordinates.shape[0], 1, coordinates.shape[1])
ct = coordinates.reshape(shape)
displacement = coordinates - ct
return np.sum(np.abs(displacement), axis=-1)
x = np.arange(11)[::-1]
y = x.copy()
coordinates = np.array([x, y]).T
distance_matrix = get_manhattan_distance_matrix(coordinates)
# print("\n .. {} COORDINATES:\n{}\n".format(coordinates.shape, coordinates))
# print("\n .. {} DISTANCE MATRIX:\n{}\n".format(distance_matrix.shape, distance_matrix))
norm = Normalize(vmin=np.min(distance_matrix), vmax=np.max(distance_matrix))
This is where to modify the value of extent.
extent = (np.min(x), np.max(x), np.min(y), np.max(y))
# extent = None
According to the matplotlib docs, the default extent is None.
fig, ax = plt.subplots()
handle = ax.imshow(distance_matrix, cmap='plasma', norm=norm, interpolation='nearest', origin='upper', extent=extent)
kws = dict(ha='center', va='center', color='gray', weight='semibold', fontsize=5)
for i in range(len(distance_matrix)):
for j in range(len(distance_matrix[i])):
if i == j:
ax.text(j, i, '', **kws)
else:
ax.text(j, i, distance_matrix[i, j], **kws)
plt.show()
plt.close(fig)
One can generate two figures by modifying extent - simply uncomment the commented line and comment the uncommented line. The two figures are below:
One can see that by setting extent, the pixel locations change, which in turn changes the positions of the ax.text(...) handles. Is there a simple solution to fix this - that is, set an arbitrary extent and still have the text handles centered in each box?
When extent=None, the effective extent is from -0.5 to 10.5 in both x and y. So the centers lie on the integer positions. Setting the extent from 0 to 10 doesn't align with the pixels. You'd have to multiply by 10/11 to get them right.
The best approach would be to set extent = (np.min(x)-0.5, np.max(x)+0.5, np.min(y)-0.5, np.max(y)+0.5) to get the centers back at integer positions.
Also note that default an image is displayed starting from the top, and that the y-axis is reversed. If you change the extent, to get the image upright, you need ax.imshow(..., origin='lower'). (The 0,0 pixel should be the blue one in the example plot.)
To put a text in the center of a pixel, you can add 0.5 to the horizontal index, divide by the width in pixels and multiply by the difference of the x-axis. And the similar calculation for the y-axis. To get better readability, the text color can be made dependent on the pixel color.
# ...
extent = (np.min(x), np.max(x), np.min(y), np.max(y))
x0, x1, y0, y1 = extent
fig, ax = plt.subplots()
handle = ax.imshow(distance_matrix, cmap='plasma', norm=norm, interpolation='nearest', origin='lower', extent=extent)
kws = dict(ha='center', va='center', weight='semibold', fontsize=5)
height = len(distance_matrix)
width = len(distance_matrix[0])
for i in range(height):
for j in range(width):
if i != j:
val = distance_matrix[i, j]
ax.text(x0 + (j + 0.5) / width * (x1 - x0), y0 + (i + 0.5) / height * (y1 - y0),
f'{val}\n{i},{j}', color='white' if norm(val) < 0.6 else 'black', **kws)
plt.show()

Matplotlib square major/minor grid for axes with different limits

I have a plot with a background grid. I need grid cells to be square (both major grid and minor grid cells) even though the limits of X and Y axes are different.
My current code is as follows:
import matplotlib.pyplot as plt
import matplotlib.ticker as plticker
import numpy as np
data = [0.014, 0.84, 0.95, -0.42, -0.79, 0.84, 0.98, 1.10, 0.56, -0.49]
fig, ax = plt.subplots(figsize=(20, 5))
ax.minorticks_on()
# Set major and minor grid lines on X
ax.set_xticks(np.arange(0, 10, 0.2))
ax.xaxis.set_minor_locator(plticker.MultipleLocator(base=0.2 / 5.))
for xmaj in ax.xaxis.get_majorticklocs():
ax.axvline(x=xmaj, ls='-', color='red', linewidth=0.8)
for xmin in ax.xaxis.get_minorticklocs():
ax.axvline(x=xmin, ls=':', color='red', linewidth=0.6)
# Set major and minor grid lines on Y
ylim = int(np.ceil(max(abs(min(data)), max(data))))
yticks = np.arange(-ylim, ylim + 0.5, 0.5)
ax.set_yticks(yticks)
ax.yaxis.set_minor_locator(plticker.MultipleLocator(base=0.5 / 5.))
for ymaj in ax.yaxis.get_majorticklocs():
ax.axhline(y=ymaj, ls='-', color='red', linewidth=0.8)
for ymin in ax.yaxis.get_minorticklocs():
ax.axhline(y=ymin, ls=':', color='red', linewidth=0.6)
ax.axis([0, 10, -ylim, ylim])
fig.tight_layout()
# Plot
ax.plot(data)
# Set equal aspect ratio NOT WORKING
plt.gca().set_aspect('equal', adjustable='box')
plt.show()
Which generates the following plot:
Large grid cells contain 5 smaller cells each. However, the aspect ratio of large grid is not 1.
Question: How can I make sure that large grid is square?
EDIT
Current approach is to set same tick locations as suggested by #ImportanceOfBeingErnest, but change Y labels:
ylim = int(np.ceil(max(abs(min(data)), max(data))))
yticks = np.arange(-ylim, ylim + 0.2, 0.2)
ax.set_yticks(yticks)
labels = ['{:.1f}'.format(v if abs(v) < 1e-3 else (1 if v > 0 else -1)*((0.5 - abs(v)%0.5) + abs(v)))
if i%2==0 else "" for i, v in enumerate(np.arange(-ylim, ylim, 0.2))]
ax.set_yticklabels(labels)
Result: seems too hacky.
When using equal aspect ratio and aiming for a square grid you would need to use the same tickspacing for both axes. This can be achieved with a MultipleLocator where the interval needs to be the same for x and y axis.
In general, grids can be created with the grid command.
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import numpy as np
data = [0.014, 0.84, 0.95, -0.42, -0.79, 0.84, 0.98, 1.10, 0.56, -0.49]
fig, ax = plt.subplots(figsize=(20, 5))
ax.minorticks_on()
# Set major and minor grid lines on X
ax.xaxis.set_major_locator(mticker.MultipleLocator(base=.5))
ax.xaxis.set_minor_locator(mticker.MultipleLocator(base=0.5 / 5.))
ax.yaxis.set_major_locator(mticker.MultipleLocator(base=.5))
ax.yaxis.set_minor_locator(mticker.MultipleLocator(base=0.5 / 5.))
ax.grid(ls='-', color='red', linewidth=0.8)
ax.grid(which="minor", ls=':', color='red', linewidth=0.6)
## Set limits
ylim = int(np.ceil(max(abs(min(data)), max(data))))
ax.axis([0, 10, -ylim, ylim])
plt.gca().set_aspect('equal', adjustable='box')
fig.tight_layout()
# Plot
ax.plot(data)
plt.show()
If you instead want to have different tick spacings with square major cells in the grid, you would need to give up the equal aspect ratio and instead set it to the quotient of the tick spacings.
import matplotlib.pyplot as plt
import matplotlib.ticker as mticker
import numpy as np
data = [0.014, 0.84, 0.95, -0.42, -0.79, 0.84, 0.98, 1.10, 0.56, -0.49]
fig, ax = plt.subplots(figsize=(20, 5))
ax.minorticks_on()
xm = 0.2
ym = 0.25
# Set major and minor grid lines on X
ax.xaxis.set_major_locator(mticker.MultipleLocator(base=xm))
ax.xaxis.set_minor_locator(mticker.MultipleLocator(base=xm / 5.))
ax.yaxis.set_major_locator(mticker.MultipleLocator(base=ym))
ax.yaxis.set_minor_locator(mticker.MultipleLocator(base=ym / 5.))
ax.grid(ls='-', color='red', linewidth=0.8)
ax.grid(which="minor", ls=':', color='red', linewidth=0.6)
## Set limits
ylim = int(np.ceil(max(abs(min(data)), max(data))))
ax.axis([0, 10, -ylim, ylim])
plt.gca().set_aspect(xm/ym, adjustable='box')
fig.tight_layout()
# Plot
ax.plot(data)
plt.show()
To then get rid of every second ticklabel, an option is
fmt = lambda x,p: "%.2f" % x if not x%(2*ym) else ""
ax.yaxis.set_major_formatter(mticker.FuncFormatter(fmt))
You should be able to achieve this by using the same locator for the both axis. However matplotlib has a limitation currently, so here's a workaround:
# matplotlib doesnt (currently) allow two axis to share the same locator
# so make two wrapper locators and combine their view intervals
def share_locator(locator):
class _SharedLocator(matplotlib.ticker.Locator):
def tick_values(self, vmin, vmax):
return locator.tick_values(vmin, vmax)
def __call__(self):
min0, max0 = shared_locators[0].axis.get_view_interval()
min1, max1 = shared_locators[1].axis.get_view_interval()
return self.tick_values(min(min0, min1), max(max0, max1))
shared_locators = (_SharedLocator(), _SharedLocator())
return shared_locators
Use like:
lx, ly = share_locator(matplotlib.ticker.AutoLocator()) # or any other locator
ax.xaxis.set_major_locator(lx)
ax.yaxis.set_major_locator(ly)

matplotlib box on basemap map

I'm trying to draw a box on a map in relative coordinates (i.e. 0 to 1). The reason is I have a colorbar on my map, but cannot see it clearly. I want a transparent box behind it. I've looked at adding patch Rectangles (see Draw rectangle (add_patch) in pylab mode), but that is in data coordinates, which is not easy to determine on this map. I also found axhspan, which uses relative coordinates for the x span, but data coordinates for the y span.
Is there a way to draw a box in a matplotlib axes object using relative coordinates?
Here's a way to add a boxed text to a relative coordinates:
#!/usr/bin/python3
from matplotlib import pyplot as plt
x = range(5)
y = range(5)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x, y)
ax.text(0.5, 0.5,
"Relative coords!",
horizontalalignment = 'center',
backgroundcolor = "white",
verticalalignment = 'center',
bbox=dict(facecolor='white', edgecolor='green', alpha=0.65),
transform = ax.transAxes,
)
fig.savefig("mwe.png")
Result:
Edit:
To draw just a box given it's relative coordinates/dimensions with no text in it:
#!/usr/bin/python3
from matplotlib import pyplot as plt
from matplotlib.patches import Rectangle
x = range(5)
y = range(5)
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(x, y, zorder=1)
plt.gca().add_patch(Rectangle(
(0.4, 0.4), # lower left point of rectangle
0.2, 0.2, # width/height of rectangle
transform=ax.transAxes,
facecolor="white",
edgecolor='green',
alpha=0.65,
zorder=2,
))
fig.savefig("mwe.png")
Result:

Resources