Concatenate ORC partition files on disk? - apache-spark

I am using Spark 2.3 to convert some CSV data to ORC for use with Amazon Athena; it is working fine! Athena works best with files that are not too small so, after manipulating the data a bit, I am using Spark to coalesce the partitions into a single partition before writing to disk, like so:
df.coalesce(1).write.orc("out.orc", compression='zlib', mode='append')
This results in a single ORC file that is an optimal file size for use with Athena. However, the coalesce step takes a very long time. It adds about 33% to the total amount of time to convert the data!
This is obviously due to the fact that Spark cannot parallelize the coalesce step when saving to a single file. When I create the same number of partitions as there are CPUs available, the ORC write out to disk is much faster!
My question is, can I parallelize the ORC write to disk and then concatenate the files somehow? This would allow me to parallelize the write and merge the files without having to compress everything on a single CPU?

Related

Apache Spark loads the entire partition into memory?

Apache Spark loads the entire partition into memory or does it load gradually? Is there any reference (preferably official) about that?
If I have a large partition will be necessary to have the partition size in memory available?
Will loading data from the in-memory partition depend on the type of transformation?
That depends of your file type, if it is CSV/textFile spark usually will load gradually even if you have multiple partitions and it depends of the size of the files. CSV does that because you cannot split by which data you need to read. CSV/textFile to get one row of data you need to scan the whole file.
If we are talking about parquet or orc files the format is naturally splittable. The data will never load the full files if you put some conditions during the read as where and select to choose the columns. That is why the recommended file size is around 1GB to optimise the spark time processing.
So if you are using parquet, each partition of spark should be able to be stored in memory while the process is going. Spark will try to store most partitions it can in the memory of the cluster during the transformations you are doing, if that cannot be fitted that will spill to the disk, reducing the execution time but ensure your execution to finish.

Breaking lineage of an RDD without relying on HDFS

I'm running a spark application on Amazon spot instances. In the end, I'm exporting my results to parquet files on S3. The tasks are memory intensive, so I have to run the initial calculations using a large number of partitions (hundreds of thousands). In the end, I would like to coalesce the partitions to a few large partitions and save them to big parquet files. And this is where I get into trouble:
- If I'm using .coalesce(), which is a narrow transformation, the entire lineage that precedes the coalesce will be executed on a small number of partitions, which will cause OOMs.
- If I'm using .repartition(), I rely on HDFS for the shuffle files.
This is a problem when using spot instances, which may be decommissioned, leaving corrupt/missing HDFS blocks.
- checkpointing also relies on HDFS so I can't use that.
- converting to a Dataframe and back didn't actually break the lineage (rdd.toDF.rdd, am I missing something?).
To conclude, I'm looking for a way to coalesce to a smaller amount of partitions only to persist the data on S3 - I would like for the calculation to happen using the original partitions.

Process multiple small files of total size 100GB in HDFS

I have a requirement in my project to process multiple .txt message files using PySpark. The files are moved from local dir to HDFS path (hdfs://messageDir/..) using batches and for every batch, i could see a few thousand .txt files and their total size is around 100GB. Almost all of the files are less than 1 MB.
May i know how HDFS stores these files and perform splits? Because every file is less than 1 MB (less than HDFS block size of 64/128MB), I dont think any split would happen but the files will be replicated and stored in 3 different data nodes.
When i use Spark to read all the files inside the HDFS directory (hdfs://messageDir/..) using wild card matching like *.txt as below:-
rdd = sc.textFile('hdfs://messageDir/*.txt')
How does Spark read the files and perform Partition because HDFS doesn't have any partition for these small files.
What if my file size increases over a period of time and get 1TB volume of small files for every batch? Can someone tell me how this can be handled?
I think you are mixing things up a little.
You have files sitting in HDFS. Here, Blocksize is the important factor. Depending on your configuration, a block normally has 64MB or 128MB. Thus, each of your 1MB files, take up 64MB in HDFS. This is aweful lot of unused space. Can you concat these TXT-files together? Otherwise you will run out of HDFS blocks, really quick. HDFS is not made to store a large amount of small files.
Spark can read files from HDFS, Local, MySQL. It cannot control the storage principles used there. As Spark uses RDDs, they are partitioned to get part of the data to the workers. The number of partitions can be checked and controlled (using repartition). For HDFS reading, this number is defined by the number of files and blocks.
Here is a nice explanation on how SparkContext.textFile() handles Partitioning and Splits on HDFS: How does Spark partition(ing) work on files in HDFS?
You can read from spark even files are small. Problem is HDFS. Usually HDFS block size is really large(64MB, 128MB, or more bigger), so many small files make name node overhead.
If you want to make more bigger file, you need to optimize reducer. Number of write files is determined by how many reducer will write. You can use coalesce or repartition method to control it.
Another way is make one more step that merge files. I wrote spark application code that coalesce. I put target record size of each file, and application get total number of records, then how much number of coalesce can be estimated.
You can use Hive or otherwise.

spark write to disk with N files less than N partitions

Can we write data to say 100 files, with 10 partitions in each file?
I know we can use repartition or coalesce to reduce number of partition. But I have seen some hadoop generated avro data with much more partitions than number of files.
The number of files that get written out is controlled by the parallelization of your DataFrame or RDD. So if your data is split across 10 Spark partitions you cannot write fewer than 10 files without reducing partitioning (e.g. coalesce or repartition).
Now, having said that when data is read back in it could be split into smaller chunks based on your configured split size but depending on format and/or compression.
If instead you want to increase the number of files written per Spark partition (e.g. to prevent files that are too large), Spark 2.2 introduces a maxRecordsPerFile option when you write data out. With this you can limit the number of records that get written per file in each partition. The other option of course would be to repartition.
The following will result in 2 files being written out even though it's only got 1 partition:
val df = spark.range(100).coalesce(1)
df.write.option("maxRecordsPerFile", 50).save("/tmp/foo")

Need less parquet files

I am doing the following process
rdd.toDF.write.mode(SaveMode.Append).partitionBy("Some Column").parquet(output_path)
However, under each partition, there are too many parquet files and each of them, the size is very small, that will makes my following steps become very slow to load all the parquet files. Is there a better way that under each partition, make less parquet files and increase the single parquet file size?
You can repartition before save:
rdd.toDF.repartition("Some Column").write.mode(SaveMode.Append).partitionBy("Some Column")
I used to have this problem.
Actually you can't control the partition of files because it depends on the executor doing.
The way to work around it is using method coalesce to make a shuffle and you can make how many partition you want but it's not efficient way you also need to set driver memory enough to handle this operation.
df = df.coalesce(numPartitions).write.partitionBy(""yyyyy").parquet("xxxx")
I also faced this issue. The problem is if you use coalesce each partition gets same number of parquet files. Now different partitions have different size so ideally I need different coalesce for each partition.
It's going to be really quite expensive if you open a lot of small files. Let's say you open 1k files and each filesize are far from the value of your parquet.block.size.
Here are my suggestions:
Create a job that will first merge your input parquet files to have smaller number of files where their sizes are near or equal to parquet.block.size. The default block size for 128Mb, though it's configurable by updating parquet.block.size. Spark would love if your parquet file is near before or equal the value of your parquet.block.size. The block size is the size of a row group being buffered in memory.
Or update your spark job to just read limited number of files
Or if you have a big machine and/or resources, just do the right tuning.
Hive query has a way to merge small files into larger one. This is not available in spark sql. Also, reducing spark.sql.shuffle.partitions wont help with Dataframe API.
I tried below solution and it generated lesser number of parquet files(from 800 parquet files to 29).
Suppose the data is loaded to a dataframe df
Create a temporary table in hive.
df.createOrReplaceTempView("tempTable")
spark.sql("CREATE TABLE test_temp LIKE test")
spark.sql("INSERT INTO TABLE test_temp SELECT * FROM tempTable")
The test_temp will contain small parquet files.
Populate final hive table from temporary table
spark.sql("INSERT INTO test SELECT * FROM test_temp")
The final table will contain lesser files. Drop temporary table after populating final table.

Resources