ebay trading api memory usage - memory-leaks

I'm working on a program to retrieve some data(getuserlist calls) from eBay service, I use multiThreads(8 threads) to fasten the progress, while it always use almost 2000+ mb memory to process the requests and don't even release these memory after all requests are done. I'm pretty sure these memory usage is not from my own data in the program. Does anyone know how to get rid of them?

Related

Is there a non-cpu intensive way to gather system usage data in Nodejs?

Context; I'm writing a monitoring/management app for a VPS, which is running Linux
Reasons; I need to quickly be able to identify overloaded threads, high ram usage, badly behaving tasks.
Problems and current stage; Right now my code works well, I'm using systeminformation npm module to gather some system information like CPU usage, memory usage, disk status and task list, I put it into an object and send to all connected clients on a socket.io server. Problem is, it seems that this approach literally brings the host machine to it's knees (Both server and client are running locally, because I'm still working on them), by that I mean my CPU usage going from 6% to 80% in an instant, which is ridiculous. I want this updating to be atleast once a second, but if possible, 60/s. Point is, I need to either find a different way of retrieving the usage data of CPU (ideally with each thread as well), memory, disks and the list of tasks. I know this question is not very specific, but I believe this is something more people than just me encounter, that being that NodeJS just kills the machine (irony). The question remains, looking forward towards any help!
I tried different approaches before but they seemed to lower the usage by a bit or just up it because of the need to have more modules loaded. This generally leads me to the conclusion I just need a better module to handle this stuff.

IIS - Worker threads not increasing beyond certain number even though the CPU usage is less than 40 percent

We are running a web API hosted in IIS 10 on an 8 core machine with 16 GB Memory and running Windows 10, and throwing a load of say 100 to 200 requests per second through JMeter on the server.
Individual transactions are taking less than 500 milliseconds. When we throw the load initially, IIS threads grow up to around 150-160 mark (monitored through resource monitor and Performance monitor) and throughput increases up to 22-24 transactions per second but throughput and number of threads stop to grow beyond this point even though the CPU usage is less than 40 per cent and we have enough physical memory also available at the peak, the resource monitor does not show any choking at the network or IO level.
The web API is making calls to the Oracle database (3-4 select calls and 2-3 inserts/updates).
We fail to understand what is stopping IIS to further grow its thread pool to process more requests in parallel while all the resources including processing power, memory, network etc are available.
We have placed many performance counters as well, there is no queue build-up (that's probably because jmeter works in synchronous mode)
Also, we have tried to set the min and max threads settings through machine.config as well as ThreadPool.SetMin and Max threads APIs but no difference was observed and seems like those setting are not taking any effect.
Important to mention that we are using synchronous calls/operations (no asnch and await). Someone has advised to convert all our blocking IO calls e.g. database calls to asynchronous mode to achieve more throughput but my understanding is that if threads cant be grown beyond this level then making async calls might not help or may indeed negatively impact the throughput. Since our code size is huge, that would be a very costly activity in terms of time and effort and we dont want to invest in it till we are sure that it would really help. If someone has anything to share on these two problems, pls do share.
Below is a screenshot of the permanence monitor.

Reason for high response time of a transaction during Load test

I am doing load testing for one hour and observed one transaction is taking high response time compared to expected value. Why is this happening? What could be the reasons even if GC, thread and system resources (CPU and Memory) utilization are normal.
How to analyze it?
Numerous. The most obvious ones would be:
Slow database query - use a DB Monitoring Tool to see what happens on database level
An issue with your application code (memory leak, large object, "heavy" function) - re-run your test with Profiler Tool telemetry and collect all the information on JVM heap, threads, objects, etc. as you can. A thread dump can shed light on where your application is stuck
It can be even a networking issue, response time includes metrics like Connect Time and Latency (time to first byte) so you can receive higher response times due to low network capacity or even a faulty router

Apache/PHP memory usage

I have a test WordPress blog on my server. Before loading a WordPress page in my broswer, my server's used memory is about 190MB. But after loading a few pages from my test blog, my server's used memory jumps to around 420MB.
I don't mind WordPress using so much memory, but what I'm struggling to understand is why does the memory never release from the system until it's rebooted?
The server doesn't seem to be slowing down but I'm concerned that it'll eventually run out of memory.
Am I paranoid or is it a genuine concern?
Without getting too technical, allocating & releasing memory are expensive operations in terms of processing resources. So long-running processes like PHP will hang onto their RAM as long as possible and re-use it, rather than asking the operating system for more memory all the time.
Apache has a setting for how many requests a particular PHP process can handle before it's killed, releasing its memory, and re-started. Chances are you aren't coming anywhere near this number of requests on your test blog.

How to determine the best number of threads in Tomcat?

How does one determine the best number of maxSpare, minSpare and maxThreads, acceptCount etc in Tomcat? Are there existing best practices?
I do understand this needs to be based on hardware (e.g. per core) and can only be a basis for further performance testing and optimization on specific hardware.
the "how many threads problem" is quite a big and complicated issue, and cannot be answered with a simple rule of thumb.
Considering how many cores you have is useful for multi threaded applications that tend to consume a lot of CPU, like number crunching and the like. This is rarely the case for a web-app, which is usually hogged not by CPU but by other factors.
One common limitation is lag between you and other external systems, most notably your DB. Each time a request arrive, it will probably query the database a number of times, which means streaming some bytes over a JDBC connection, then waiting for those bytes to arrive to the database (even is it's on localhost there is still a small lag), then waiting for the DB to consider our request, then wait for the database to process it (the database itself will be waiting for the disk to seek to a certain region) etc...
During all this time, the thread is idle, so another thread could easily use that CPU resources to do something useful. It's quite common to see 40% to 80% of time spent in waiting on DB response.
The same happens also on the other side of the connection. While a thread of yours is writing its output to the browser, the speed of the CLIENT connection may keep your thread idle waiting for the browser to ack that a certain packet has been received. (This was quite an issue some years ago, recent kernels and JVMs use larger buffers to prevent your threads for idling that way, however a reverse proxy in front of you web application server, even simply an httpd, can be really useful to avoid people with bad internet connection to act as DDOS attacks :) )
Considering these factors, the number of threads should be usually much more than the cores you have. Even on a simple dual or quad core server, you should configure a few dozens threads at least.
So, what is limiting the number of threads you can configure?
First of all, each thread (used to) consume a lot of resources. Each thread have a stack, which consumes RAM. Moreover, each Thread will actually allocate stuff on the heap to do its work, consuming again RAM, and the act of switching between threads (context switching) is quite heavy for the JVM/OS kernel.
This makes it hard to run a server with thousands of threads "smoothly".
Given this picture, there are a number of techniques (mostly: try, fail, tune, try again) to determine more or less how many threads you app will need:
1) Try to understand where your threads spend time. There are a number of good tools, but even jvisualvm profiler can be a great tool, or a tracing aspect that produces summary timing stats. The more time they spend waiting for something external, the more you can spawn more threads to use CPU during idle times.
2) Determine your RAM usage. Given that the JVM will use a certain amount of memory (most notably the permgen space, usually up to a hundred megabytes, again jvisualvm will tell) independently of how many threads you use, try running with one thread and then with ten and then with one hundred, while stressing the app with jmeter or whatever, and see how heap usage will grow. That can pose a hard limit.
3) Try to determine a target. Each user request needs a thread to be handled. If your average response time is 200ms per "get" (it would be better not to consider loading of images, CSS and other static resources), then each thread is able to serve 4/5 pages per second. If each user is expected to "click" each 3/4 seconds (depends, is it a browser game or a site with a lot of long texts?), then one thread will "serve 20 concurrent users", whatever it means. If in the peak hour you have 500 single users hitting your site in 1 minute, then you need enough threads to handle that.
4) Crash test the high limit. Use jmeter, configure a server with a lot of threads on a spare virtual machine, and see how response time will get worse when you go over a certain limit. More than hardware, the thread implementation of the underlying OS is important here, but no matter what it will hit a point where the CPU spend more time trying to figure out which thread to run than actually running it, and that numer is not so incredibly high.
5) Consider how threads will impact other components. Each thread will probably use one (or maybe more than one) connection to the database, is the database able to handle 50/100/500 concurrent connections? Even if you are using a sharded cluster of nosql servers, does the server farm offer enough bandwidth between those machines? What else will run on the same machine with the web-app server? Anache httpd? squid? the database itself? a local caching proxy to the database like mongos or memcached?
I've seen systems in production with only 4 threads + 4 spare threads, cause the work done by that server was merely to resize images, so it was nearly 100% CPU intensive, and others configured on more or less the same hardware with a couple of hundreds threads, cause the webapp was doing a lot of SOAP calls to external systems and spending most of its time waiting for answers.
Oce you've determined the approx. minimum and maximum threads optimal for you webapp, then I usually configure it this way :
1) Based on the constraints on RAM, other external resources and experiments on context switching, there is an absolute maximum which must not be reached. So, use maxThreads to limit it to about half or 3/4 of that number.
2) If the application is reasonably fast (for example, it exposes REST web services that usually send a response is a few milliseconds), then you can configure a large acceptCount, up to the same number of maxThreads. If you have a load balancer in front of your web application server, set a small acceptCount, it's better for the load balancer to see unaccepted requests and switch to another server than putting users on hold on an already busy one.
3) Since starting a thread is (still) considered a heavy operation, use minSpareThreads to have a few threads ready when peak hours arrive. This again depends on the kind of load you are expecting. It's even reasonable to have minSpareThreads, maxSpareThreads and maxThreads setup so that an exact number of threads is always ready, never reclaimed, and performances are predictable. If you are running tomcat on a dedicated machine, you can raise minSpareThreads and maxSpareThreads without any danger of hogging other processes, otherwise tune them down cause threads are resources shared with the rest of the processes running on most OS.

Resources