Tensorflow model's weight updated on sess.run - python-3.x

I am struggling with the fact that my weights in the model get updated when I run sess.run(without reference to train step).
I try to feed my model with variables to get the estimated outputs, but when I run the sess.run the weights get updated.
### in the training phase ####
X_eval, Y_eval, O_eval, W_eval, cost_eval, train_step_eval = sess.run([X, Y, O_out, W, cost, train_step], feed_dict={X:x_batch , Y:y_batch})
### when the training is finished (closed for loop) ###
print(W_eval)
Y_out, W_eval2 = sess.run([O_out, W], feed_dict = {X:labeled_features[:,: - n_labels], Y:labeled_features[:,- n_labels :]})
print(W_eval2)
When I compare W_eval and W_eval2 they are not the same, which I do not understand why.
Could you please point me to the right direction, why the weights are not the same?
'w3': array([[-2.9685912],
[-3.215485 ],
[ 3.8806837],
[-3.331745 ],
[-3.3904853]], dtype=float32
'w3': array([[-2.9700036],
[-3.2168453],
[ 3.8804765],
[-3.3330843],
[-3.3922129]], dtype=float32
Thank you in advance.
EDIT Added W_eval assignment.

Your code
### in the training phase ####
X_eval, Y_eval, O_eval, W_eval, cost_eval, train_step_eval = sess.run([X, Y, O_out, W, cost, train_step], feed_dict={X:x_batch , Y:y_batch})
### when the training is finished (closed for loop) ###
print(W_eval)
Y_out, W_eval2 = sess.run([O_out, W], feed_dict = {X:labeled_features[:,: - n_labels], Y:labeled_features[:,- n_labels :]})
print(W_eval2)
still executes train_step. A simpler version to understand what is going on is:
import tensorflow as tf
a = tf.get_variable('a', initializer=42.)
train_step = a.assign(a + 1)
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
value, _ = sess.run([a, train_step]) # will update a
print(value)
value = sess.run([a]) # will not update a
print(value)
value = sess.run([a]) # will not update a
print(value)
gives the output
42.0
[43.0]
[43.0]
Another thing to check is if x_batch == labeled_features[:,: - n_labels] holds.

Related

Implementing Spinningup Pytorch DDPG for Cartpole-v0 problem - getting discrete values

This is my first time posting a question here. Please correct me if I am not putting the right information.
I am trying to implement DDPG for the cartpole problem from here: https://spinningup.openai.com/en/latest/user/algorithms.html
Its giving the error
act_limit = env.action_space.high[0] #AD
AttributeError: 'Discrete' object has no attribute 'high'
can you suggest how to fix this. I think because cartpole is a continous action space, I am getting this error as act_dim return discrete values
from copy import deepcopy
import numpy as np
import torch
from torch.optim import Adam
import gym
import time
import spinningup.spinup.algos.pytorch.ddpg.core as core
from spinningup.spinup.utils.logx import EpochLogger
class ReplayBuffer:
"""
A simple FIFO experience replay buffer for DDPG agents.
"""
def __init__(self, obs_dim, act_dim, size):
self.obs_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32)
self.obs2_buf = np.zeros(core.combined_shape(size, obs_dim), dtype=np.float32)
self.act_buf = np.zeros(core.combined_shape(size, act_dim), dtype=np.float32) #AD action_memory
self.rew_buf = np.zeros(size, dtype=np.float32) #AD reward mem
self.done_buf = np.zeros(size, dtype=np.float32) #AD Terminal memory
self.ptr, self.size, self.max_size = 0, 0, size
def store(self, obs, act, rew, next_obs, done): #AD Store tranisiton
self.obs_buf[self.ptr] = obs
self.obs2_buf[self.ptr] = next_obs
self.act_buf[self.ptr] = act
self.rew_buf[self.ptr] = rew
self.done_buf[self.ptr] = done
self.ptr = (self.ptr+1) % self.max_size
self.size = min(self.size+1, self.max_size)
def sample_batch(self, batch_size=32):
idxs = np.random.randint(0, self.size, size=batch_size)
batch = dict(obs=self.obs_buf[idxs],
obs2=self.obs2_buf[idxs],
act=self.act_buf[idxs],
rew=self.rew_buf[idxs],
done=self.done_buf[idxs])
return {k: torch.as_tensor(v, dtype=torch.float32) for k,v in batch.items()}
def ddpg(env_fn, actor_critic=core.MLPActorCritic, ac_kwargs=dict(), seed=0,
steps_per_epoch=4000, epochs=100, replay_size=int(1e6), gamma=0.99,
polyak=0.995, pi_lr=1e-3, q_lr=1e-3, batch_size=100, start_steps=10000,
update_after=1000, update_every=50, act_noise=0.1, num_test_episodes=10,
max_ep_len=1000, logger_kwargs=dict(), save_freq=1):
"""
Deep Deterministic Policy Gradient (DDPG)
Args:
env_fn : A function which creates a copy of the environment.
The environment must satisfy the OpenAI Gym API.
actor_critic: The constructor method for a PyTorch Module with an ``act``
method, a ``pi`` module, and a ``q`` module. The ``act`` method and
``pi`` module should accept batches of observations as inputs,
and ``q`` should accept a batch of observations and a batch of
actions as inputs. When called, these should return:
=========== ================ ======================================
Call Output Shape Description
=========== ================ ======================================
``act`` (batch, act_dim) | Numpy array of actions for each
| observation.
``pi`` (batch, act_dim) | Tensor containing actions from policy
| given observations.
``q`` (batch,) | Tensor containing the current estimate
| of Q* for the provided observations
| and actions. (Critical: make sure to
| flatten this!)
=========== ================ ======================================
ac_kwargs (dict): Any kwargs appropriate for the ActorCritic object
you provided to DDPG.
seed (int): Seed for random number generators.
steps_per_epoch (int): Number of steps of interaction (state-action pairs)
for the agent and the environment in each epoch.
epochs (int): Number of epochs to run and train agent.
replay_size (int): Maximum length of replay buffer.
gamma (float): Discount factor. (Always between 0 and 1.)
polyak (float): Interpolation factor in polyak averaging for target
networks. Target networks are updated towards main networks
according to:
.. math:: \\theta_{\\text{targ}} \\leftarrow
\\rho \\theta_{\\text{targ}} + (1-\\rho) \\theta
where :math:`\\rho` is polyak. (Always between 0 and 1, usually
close to 1.)
pi_lr (float): Learning rate for policy.
q_lr (float): Learning rate for Q-networks.
batch_size (int): Minibatch size for SGD.
start_steps (int): Number of steps for uniform-random action selection,
before running real policy. Helps exploration.
update_after (int): Number of env interactions to collect before
starting to do gradient descent updates. Ensures replay buffer
is full enough for useful updates.
update_every (int): Number of env interactions that should elapse
between gradient descent updates. Note: Regardless of how long
you wait between updates, the ratio of env steps to gradient steps
is locked to 1.
act_noise (float): Stddev for Gaussian exploration noise added to
policy at training time. (At test time, no noise is added.)
num_test_episodes (int): Number of episodes to test the deterministic
policy at the end of each epoch.
max_ep_len (int): Maximum length of trajectory / episode / rollout.
logger_kwargs (dict): Keyword args for EpochLogger.
save_freq (int): How often (in terms of gap between epochs) to save
the current policy and value function.
"""
logger = EpochLogger(**logger_kwargs)
logger.save_config(locals())
torch.manual_seed(seed)
np.random.seed(seed)
env, test_env = env_fn(), env_fn()
obs_dim = env.observation_space.shape
# act_dim = env.action_space.shape[0] #AD
if len(env.action_space.shape) > 1:
action_dim = env.action_space.shape[0]
else:
action_dim = env.action_space.n
# Action limit for clamping: critically, assumes all dimensions share the same bound!
act_limit = env.action_space.high[0] #AD
# act_limit = env.action_space.high
# Create actor-critic module and target networks
ac = actor_critic(env.observation_space, env.action_space, **ac_kwargs)
ac_targ = deepcopy(ac)
# Freeze target networks with respect to optimizers (only update via polyak averaging)
for p in ac_targ.parameters():
p.requires_grad = False
# Experience buffer
replay_buffer = ReplayBuffer(obs_dim=obs_dim, act_dim=act_dim, size=replay_size)
# Count variables (protip: try to get a feel for how different size networks behave!)
var_counts = tuple(core.count_vars(module) for module in [ac.pi, ac.q])
logger.log('\nNumber of parameters: \t pi: %d, \t q: %d\n'%var_counts)
# Set up function for computing DDPG Q-loss
def compute_loss_q(data):
o, a, r, o2, d = data['obs'], data['act'], data['rew'], data['obs2'], data['done']
q = ac.q(o,a)
# Bellman backup for Q function
with torch.no_grad():
q_pi_targ = ac_targ.q(o2, ac_targ.pi(o2))
backup = r + gamma * (1 - d) * q_pi_targ
# MSE loss against Bellman backup
loss_q = ((q - backup)**2).mean()
# Useful info for logging
loss_info = dict(QVals=q.detach().numpy())
return loss_q, loss_info
# Set up function for computing DDPG pi loss
def compute_loss_pi(data):
o = data['obs']
q_pi = ac.q(o, ac.pi(o))
return -q_pi.mean()
# Set up optimizers for policy and q-function
pi_optimizer = Adam(ac.pi.parameters(), lr=pi_lr)
q_optimizer = Adam(ac.q.parameters(), lr=q_lr)
# Set up model saving
logger.setup_pytorch_saver(ac)
def update(data):
# First run one gradient descent step for Q.
q_optimizer.zero_grad()
loss_q, loss_info = compute_loss_q(data)
loss_q.backward()
q_optimizer.step()
# Freeze Q-network so you don't waste computational effort
# computing gradients for it during the policy learning step.
for p in ac.q.parameters():
p.requires_grad = False
# Next run one gradient descent step for pi.
pi_optimizer.zero_grad()
loss_pi = compute_loss_pi(data)
loss_pi.backward()
pi_optimizer.step()
# Unfreeze Q-network so you can optimize it at next DDPG step.
for p in ac.q.parameters():
p.requires_grad = True
# Record things
logger.store(LossQ=loss_q.item(), LossPi=loss_pi.item(), **loss_info)
# Finally, update target networks by polyak averaging.
with torch.no_grad():
for p, p_targ in zip(ac.parameters(), ac_targ.parameters()):
# NB: We use an in-place operations "mul_", "add_" to update target
# params, as opposed to "mul" and "add", which would make new tensors.
p_targ.data.mul_(polyak)
p_targ.data.add_((1 - polyak) * p.data)
def get_action(o, noise_scale):
a = ac.act(torch.as_tensor(o, dtype=torch.float32))
a += noise_scale * np.random.randn(act_dim)
return np.clip(a, -act_limit, act_limit)
def test_agent():
for j in range(num_test_episodes):
o, d, ep_ret, ep_len = test_env.reset(), False, 0, 0
while not(d or (ep_len == max_ep_len)):
# Take deterministic actions at test time (noise_scale=0)
o, r, d, _ = test_env.step(get_action(o, 0))
ep_ret += r
ep_len += 1
logger.store(TestEpRet=ep_ret, TestEpLen=ep_len)
# Prepare for interaction with environment
total_steps = steps_per_epoch * epochs
start_time = time.time()
o, ep_ret, ep_len = env.reset(), 0, 0
# Main loop: collect experience in env and update/log each epoch
for t in range(total_steps):
# Until start_steps have elapsed, randomly sample actions
# from a uniform distribution for better exploration. Afterwards,
# use the learned policy (with some noise, via act_noise).
if t > start_steps:
a = get_action(o, act_noise)
else:
a = env.action_space.sample()
# Step the env
o2, r, d, _ = env.step(a)
ep_ret += r
ep_len += 1
# Ignore the "done" signal if it comes from hitting the time
# horizon (that is, when it's an artificial terminal signal
# that isn't based on the agent's state)
d = False if ep_len==max_ep_len else d
# Store experience to replay buffer
replay_buffer.store(o, a, r, o2, d)
# Super critical, easy to overlook step: make sure to update
# most recent observation!
o = o2
# End of trajectory handling
if d or (ep_len == max_ep_len):
logger.store(EpRet=ep_ret, EpLen=ep_len)
o, ep_ret, ep_len = env.reset(), 0, 0
# Update handling
if t >= update_after and t % update_every == 0:
for _ in range(update_every):
batch = replay_buffer.sample_batch(batch_size)
update(data=batch)
# End of epoch handling
if (t+1) % steps_per_epoch == 0:
epoch = (t+1) // steps_per_epoch
# Save model
if (epoch % save_freq == 0) or (epoch == epochs):
logger.save_state({'env': env}, None)
# Test the performance of the deterministic version of the agent.
test_agent()
# Log info about epoch
logger.log_tabular('Epoch', epoch)
logger.log_tabular('EpRet', with_min_and_max=True)
logger.log_tabular('TestEpRet', with_min_and_max=True)
logger.log_tabular('EpLen', average_only=True)
logger.log_tabular('TestEpLen', average_only=True)
logger.log_tabular('TotalEnvInteracts', t)
logger.log_tabular('QVals', with_min_and_max=True)
logger.log_tabular('LossPi', average_only=True)
logger.log_tabular('LossQ', average_only=True)
logger.log_tabular('Time', time.time()-start_time)
logger.dump_tabular()
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--env', type=str, default='CartPole-v0')
parser.add_argument('--hid', type=int, default=256)
parser.add_argument('--l', type=int, default=2)
parser.add_argument('--gamma', type=float, default=0.99) #change this
parser.add_argument('--seed', '-s', type=int, default=0) #change this
parser.add_argument('--epochs', type=int, default=50)
parser.add_argument('--exp_name', type=str, default='ddpg')
args = parser.parse_args()
from spinningup.spinup.utils.run_utils import setup_logger_kwargs
logger_kwargs = setup_logger_kwargs(args.exp_name, args.seed)
ddpg(lambda : gym.make(args.env), actor_critic=core.MLPActorCritic,
ac_kwargs=dict(hidden_sizes=[args.hid]*args.l),
gamma=args.gamma, seed=args.seed, epochs=args.epochs,
logger_kwargs=logger_kwargs)

recursionerror: maximum recursion depth exceeded in comparison in tensorflow with skopt

I want to compute a Bayesian Search with [skopt] (https://scikit-optimize.github.io/stable/auto_examples/bayesian-optimization.html).
My dataset is a Time series, and t is my time step.
But i have a error:
recursionerror: maximum recursion depth exceeded in comparison
This is my code :
def Grid_search_class(X_train=X_train[:,0:t+1,:]
,y_train=y_train
,X_test=X_test[:,0:t+1,:],
y_test=y_test
,n_calls=20,
print_score=False,t=t):
""" INPUTS : Train Test data
n_calls Number of calls to func"""
import tensorflow as tf
Adam = tf.keras.optimizers.Adam(learning_rate=0.007)
Adagrad = tf.keras.optimizers.Adagrad(learning_rate=0.007)
dim_num_input_text = Categorical([16,32,64,128,256,512,1024,2048], name='num_dense_layers_text')
dim_num_dense_text = Integer(low=0, high=5, name='num_HLD_nodes_text')
dim_drop_text = Categorical([0.01,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4], name='drop_text')
dim_num_input_temp = Categorical([16,32,64,128,256,512,1024,2048], name='num_dense_layers_temp')
dim_num_dense_temp = Integer(low=0, high=5, name='num_HLD_nodes_temp')
dim_drop_temp = Categorical([0.01,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4], name='drop_temp')
dim_num_input_fixe = Categorical([16,32,64,128,256,512,1024,2048], name='num_dense_layers_fixe')
dim_num_dense_fixe = Integer(low=0, high=5, name='num_HLD_nodes_fixe')
dim_drop_fixe = Categorical([0.01,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4], name='drop_fixe')
dim_num_input_merge = Categorical([16,32,64,128,256,512,1024,2048], name='num_dense_layers_merge')
dim_num_dense_merge = Integer(low=0, high=5, name='num_HLD_nodes_merge')
dim_drop_merge = Categorical([0.01,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4], name='drop_merge')
dim_optim=Categorical([Adam,Adagrad], name='optim')
dimensions = [dim_num_input_text,
dim_num_dense_text,
dim_drop_text,
dim_num_input_temp,
dim_num_dense_temp,
dim_drop_temp,
dim_num_input_fixe,
dim_num_dense_fixe,
dim_drop_fixe,
dim_num_input_merge,
dim_num_dense_merge,
dim_drop_merge,
dim_optim
]
default_parameters = [512,0,0.1,512,0,0.1,512,0,0.1,512,0,0.1,Adam]
def create_model(num_dense_layers_text,num_HLD_nodes_text,drop_text,
num_dense_layers_temp,num_HLD_nodes_temp,drop_temp,
num_dense_layers_fixe,num_HLD_nodes_fixe,drop_fixe,
num_dense_layers_merge,num_HLD_nodes_merge,drop_merge,optim,t=t):
x_text = model_text.layers[ind_list[-1]-1].output
if num_dense_layers_text>0:
for i in range(num_dense_layers_text):
x_text =tf.keras.layers.Dense(num_HLD_nodes_text,activation='relu')(x_text)
x_text=tf.keras.layers.Dropout(drop_text)(x_text)
x_temp = model_temp[t].layers[ind_list[t]].output
if num_dense_layers_temp>0:
for i in range(num_dense_layers_temp):
x_temp =tf.keras.layers.Dense(num_HLD_nodes_temp,activation='relu')(x_temp)
x_temp=tf.keras.layers.Dropout(drop_temp)(x_temp)
x_fixe= model_fixe.layers[1].output
if num_dense_layers_fixe>0:
for i in range(num_dense_layers_fixe):
x_fixe =tf.keras.layers.Dense(num_HLD_nodes_fixe,activation='relu')(x_fixe)
x_fixe=tf.keras.layers.Dropout(drop_fixe)(x_fixe)
merge = tf.keras.layers.concatenate([x_text,x_temp,x_fixe])
if num_dense_layers_merge>0:
for i in range(num_dense_layers_merge):
merge =tf.keras.layers.Dense(num_HLD_nodes_merge,activation='relu')(merge)
merge=tf.keras.layers.Dropout(drop_merge)(merge)
#add our classification layer.
predictions = tf.keras.layers.Dense(3,activation='softmax')(merge)
model = tf.keras.Model(inputs = [model_text.input,model_temp[t].input,model_fixe.input], outputs = predictions)
#setup our optimizer and compile
model.compile(optimizer=optim, loss=ncce,
metrics=[ tf.keras.metrics.Precision(name='precision'),
tf.keras.metrics.Recall(name='recall'),F1Score(num_classes=3,name='F1',average='macro')])
return model
score='val_F1'
#use_named_args(dimensions=dimensions)
def fitness(num_dense_layers_text,num_HLD_nodes_text,drop_text,
num_dense_layers_temp,num_HLD_nodes_temp,drop_temp,
num_dense_layers_fixe,num_HLD_nodes_fixe,drop_fixe,
num_dense_layers_merge,num_HLD_nodes_merge,drop_merge,optim):
print(num_dense_layers_text,num_HLD_nodes_text,drop_text,
num_dense_layers_temp,num_HLD_nodes_temp,drop_temp,
num_dense_layers_fixe,num_HLD_nodes_fixe,drop_fixe,
num_dense_layers_merge,num_HLD_nodes_merge,drop_merge,optim)
model = create_model(num_dense_layers_text=num_dense_layers_text,
num_HLD_nodes_text=num_HLD_nodes_text,drop_text=drop_text,
num_dense_layers_temp=num_dense_layers_temp,
num_HLD_nodes_temp=num_HLD_nodes_temp,drop_temp=drop_temp,
num_dense_layers_fixe=num_dense_layers_fixe,
num_HLD_nodes_fixe=num_HLD_nodes_fixe,drop_fixe=drop_fixe,
num_dense_layers_merge=num_dense_layers_merge,drop_merge=drop_merge,
num_HLD_nodes_merge=num_HLD_nodes_merge,optim=optim,t=t)
callback=tf.keras.callbacks.EarlyStopping(
monitor=score, min_delta=0.01, patience=1, verbose=0, mode='auto',
baseline=0, restore_best_weights=False
)
#named blackbox becuase it represents the structure
blackbox = model.fit(x=X_train,
y=y_train,verbose=1,
epochs=2,
batch_size=32,
validation_data=(X_test,y_test)
)
#return the validation accuracy for the last epoch.
val_loss = blackbox.history[score][-1]
if score=='val_F1':
val_loss=-val_loss
# Print the classification accuracy.
if print_score :
print()
print("val_score: {}".format(val_loss))
print()
# Delete the Keras model with these hyper-parameters from memory.
del model
# Clear the Keras session, otherwise it will keep adding new
# models to the same TensorFlow graph each time we create
# a model with a different set of hyper-parameters.
tf.keras.backend.clear_session()
tf.compat.v1.reset_default_graph()
# the optimizer aims for the lowest score, so we return our negative accuracy
return -val_loss
gp_result = gp_minimize(fitness,
dimensions=dimensions,
n_calls=n_calls,n_random_starts=7,
noise= 0.01,
x0=default_parameters)
a=pd.concat([pd.DataFrame(gp_result.x_iters, columns = ["dense layers text","HLD nodes text","drop text",
"dense layers temp","HLD nodes temp","drop temp",
"dense layers fixe","HLD nodes fixe","drop fixe",
"dense layers merge","HLD nodes merge","drop merge",
"optim","batch size"]),
(pd.Series(gp_result.func_vals*-1, name="val_loss"))], axis=1)
a.sort_values(by=['val_loss'], inplace=True,ascending=False)
print(a.iloc[:10])
return a
This step is looking for the best parameters a step t
def Run_Grid_search_temp(j=0,n_calls=25):
while j<X_train.shape[1] :
temp=Grid_search_class(t=j,n_calls=n_calls)
print(temp)
j+=1
return
And this one is a loop on the step.
sys.setrecursionlimit(10000)
seems to resolve my problem.

Tensorflow: why is the outcome of single neural network node without activation function different then my own calculation?

i created a single node with 3 inputs and one output with bias 0 and no activation function.
as far as i understand, the only thing that happens here is a matrix multiplication between the input vector and the randomly initialized weights but when i do the multiplication myself with the same inputs and weights i get a different outcome? what am i missing/doing wrong?
thanks in advance!
i base my calculation on some code provided here
here is the code:
def example_code(self):
import tensorflow as tf
data = [[1.0,2.0,3.0]]
x = tf.placeholder(tf.float32,shape=[1,3],name="mydata")
node = tf.layers.Dense(units=1)
y = node(x)
init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
print("input: "+str(data))
outcome = sess.run(y,feed_dict={x:data})
#print("outcome from tensorflow: "+str(outcome))
weights = node.get_weights()[0]
bias = node.get_weights()[1]
print("weights: "+str(weights))
print("bias: "+str(bias))
print("outcome from tensorflow: " + str(outcome))
outcome = tf.matmul(data,weights)
print("manually calculated outcome: "+str(sess.run(outcome)))
output from code:
input: [[1.0, 2.0, 3.0]]
weights: [[ 0.72705185] [-0.70188504] [ 0.5336163 ]]
bias: [0.]
outcome from tensorflow: [[-1.3463312]]
manually calculated outcome: [[0.9241307]]
The problem is that tf.layers is not using uses is not using your session sess. This in turn results in different initializations for the weights, hence the two different values. tf.layers ends up using tf.keras.backend.get_session() to retrieve the session used for initialization and retrieval of weights (node.get_weights()). tf.keras.backend.get_session() tries to use the default session if there is one, and if there is not then it creates its own session. In this case, sess is not configured as default session (only tf.InteractiveSession gets automatically configured as default session on construction). The simplest fix is to use tf.Session in the recommended way, as a context manager:
def example_code(self):
import tensorflow as tf
with tf.Session() as sess:
data = [[1.0,2.0,3.0]]
x = tf.placeholder(tf.float32,shape=[1,3],name="mydata")
node = tf.layers.Dense(units=1)
y = node(x)
init = tf.global_variables_initializer()
sess.run(init)
print("input: "+str(data))
outcome = sess.run(y,feed_dict={x:data})
#print("outcome from tensorflow: "+str(outcome))
weights = node.get_weights()[0]
bias = node.get_weights()[1]
print("weights: "+str(weights))
print("bias: "+str(bias))
print("outcome from tensorflow: " + str(outcome))
outcome = tf.matmul(data,weights)
print("manually calculated outcome: "+str(sess.run(outcome)))
This will set sess as default session, and also it will make sure its resources are freed when the function is finished (which was another issue in your code). If for whatever reason you want to use some session as default but do not want to close it with the context manager, you can just use as_default():
def example_code(self):
import tensorflow as tf
sess = tf.Session():
with sess.as_default():
data = [[1.0,2.0,3.0]]
x = tf.placeholder(tf.float32,shape=[1,3],name="mydata")
node = tf.layers.Dense(units=1)
y = node(x)
init = tf.global_variables_initializer()
sess.run(init)
print("input: "+str(data))
outcome = sess.run(y,feed_dict={x:data})
#print("outcome from tensorflow: "+str(outcome))
weights = node.get_weights()[0]
bias = node.get_weights()[1]
print("weights: "+str(weights))
print("bias: "+str(bias))
print("outcome from tensorflow: " + str(outcome))
outcome = tf.matmul(data,weights)
print("manually calculated outcome: "+str(sess.run(outcome)))
# You need to manually ensure that the session gets closed after
sess.close()

Style Transfer using tensorflow for model inception?

I have written code which I am trying to make it work from many weeks, the problem is with the update on input not working.
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
### END CODE HERE ###
# Run the noisy input image (initial generated image) through the model. Use assign().
### START CODE HERE ### (1 line)
init_fn(sess)
sess.run(input_img.assign(inputo))
### END CODE HERE ###
for i in range(num_iterations):
generated_image,_ = sess.run([input_img,train_step])
if i%20 == 0:
Jt, Jc, Js = sess.run([Jolo, content_loss, style_losss])
Model Definition is done in this section, where I have defined shared Variable, and loaded inception v1 model from tf.slim
with tf.variable_scope('input') as scope:
input_img = tf.get_variable('in_img',shape=([1, img_height, img_width, 3]),dtype=tf.float32,initializer=tf.zeros_initializer())
with slim.arg_scope(inception.inception_v1_arg_scope()):
_, end_points = inception.inception_v1(input_img, num_classes=1001, is_training=False)
# Create an operation that loads the pre-trained model from the checkpoint
init_fn = slim.assign_from_checkpoint_fn(
os.path.join('home/n/models/inception_/', '/home/n/data/inception_v1.ckpt'),
slim.get_model_variables('InceptionV1')
)
I am doing something wrong, and because of it update never happens.
Thank you

Get gradient value necessary to break an image

I've been experimenting with adversarial images and I read up on the fast gradient sign method from the following link https://arxiv.org/pdf/1412.6572.pdf...
The instructions explain that the necessary gradient can be calculated using backpropagation...
I've been successful at generating adversarial images but I have failed at attempting to extract the gradient necessary to create an adversarial image. I will demonstrate what I mean.
Let us assume that I have already trained my algorithm using logistic regression. I restore the model and I extract the number I wish to change into a adversarial image. In this case it is the number 2...
# construct model
logits = tf.matmul(x, W) + b
pred = tf.nn.softmax(logits)
...
...
# assign the images of number 2 to the variable
sess.run(tf.assign(x, labels_of_2))
# setup softmax
sess.run(pred)
# placeholder for target label
fake_label = tf.placeholder(tf.int32, shape=[1])
# setup the fake loss
fake_loss = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits,labels=fake_label)
# minimize fake loss using gradient descent,
# calculating the derivatives of the weight of the fake image will give the direction of weights necessary to change the prediction
adversarial_step = tf.train.GradientDescentOptimizer(learning_rate=FLAGS.learning_rate).minimize(fake_loss, var_list=[x])
# continue calculating the derivative until the prediction changes for all 10 images
for i in range(FLAGS.training_epochs):
# fake label tells the training algorithm to use the weights calculated for number 6
sess.run(adversarial_step, feed_dict={fake_label:np.array([6])})
sess.run(pred)
This is my approach, and it works perfectly. It takes my image of number 2 and changes it only slightly so that when I run the following...
x_in = np.expand_dims(x[0], axis=0)
classification = sess.run(tf.argmax(pred, 1))
print(classification)
it will predict the number 2 as a number 6.
The issue is, I need to extract the gradient necessary to trick the neural network into thinking number 2 is 6. I need to use this gradient to create the nematode mentioned above.
I am not sure how can I extract the gradient value. I tried looking at tf.gradients but I was unable to figure out how to produce an adversarial image using this function. I implemented the following after the fake_loss variable above...
tf.gradients(fake_loss, x)
for i in range(FLAGS.training_epochs):
# calculate gradient with weight of number 6
gradient_value = sess.run(gradients, feed_dict={fake_label:np.array([6])})
# update the image of number 2
gradient_update = x+0.007*gradient_value[0]
sess.run(tf.assign(x, gradient_update))
sess.run(pred)
Unfortunately the prediction did not change in the way I wanted, and moreover this logic resulted in a rather blurry image.
I would appreciate an explanation as to what I need to do in order calculate and extract the gradient that will trick the neural network, so that if I were to take this gradient and apply it to my image as a nematode, it will result in a different prediction.
Why not let the Tensorflow optimizer add the gradients to your image? You can still evaluate the nematode to get the resulting gradients that were added.
I created a bit of sample code to demonstrate this with a panda image. It uses the VGG16 neural network to transform your own panda image into a "goldfish" image. Every 100 iterations it saves the image as PDF so you can print it losslessly to check if your image is still a goldfish.
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt
import IPython.display as ipyd
from libs import vgg16 # Download here! https://github.com/pkmital/CADL/tree/master/session-4/libs
pandaimage = plt.imread('panda.jpg')
pandaimage = vgg16.preprocess(pandaimage)
plt.imshow(pandaimage)
img_4d = np.array([pandaimage])
g = tf.get_default_graph()
input_placeholder = tf.Variable(img_4d,trainable=False)
to_add_image = tf.Variable(tf.random_normal([224,224,3], mean=0.0, stddev=0.1, dtype=tf.float32))
combined_images_not_clamped = input_placeholder+to_add_image
filledmax = tf.fill(tf.shape(combined_images_not_clamped), 1.0)
filledmin = tf.fill(tf.shape(combined_images_not_clamped), 0.0)
greater_than_one = tf.greater(combined_images_not_clamped, filledmax)
combined_images_with_max = tf.where(greater_than_one, filledmax, combined_images_not_clamped)
lower_than_zero =tf.less(combined_images_with_max, filledmin)
combined_images = tf.where(lower_than_zero, filledmin, combined_images_with_max)
net = vgg16.get_vgg_model()
tf.import_graph_def(net['graph_def'], name='vgg')
names = [op.name for op in g.get_operations()]
style_layer = 'prob:0'
the_prediction = tf.import_graph_def(
net['graph_def'],
name='vgg',
input_map={'images:0': combined_images},return_elements=[style_layer])
goldfish_expected_np = np.zeros(1000)
goldfish_expected_np[1]=1.0
goldfish_expected_tf = tf.Variable(goldfish_expected_np,dtype=tf.float32,trainable=False)
loss = tf.reduce_sum(tf.square(the_prediction[0]-goldfish_expected_tf))
optimizer = tf.train.AdamOptimizer().minimize(loss)
sess = tf.InteractiveSession()
sess.run(tf.global_variables_initializer())
def show_many_images(*images):
fig = plt.figure()
for i in range(len(images)):
print(images[i].shape)
subplot_number = 100+10*len(images)+(i+1)
plt.subplot(subplot_number)
plt.imshow(images[i])
plt.show()
for i in range(1000):
_, loss_val = sess.run([optimizer,loss])
if i%100==1:
print("Loss at iteration %d: %f" % (i,loss_val))
_, loss_val,adversarial_image,pred,nematode = sess.run([optimizer,loss,combined_images,the_prediction,to_add_image])
res = np.squeeze(pred)
average = np.mean(res, 0)
res = res / np.sum(average)
plt.imshow(adversarial_image[0])
plt.show()
print([(res[idx], net['labels'][idx]) for idx in res.argsort()[-5:][::-1]])
show_many_images(img_4d[0],nematode,adversarial_image[0])
plt.imsave('adversarial_goldfish.pdf',adversarial_image[0],format='pdf') # save for printing
Let me know if this helps you!

Resources