3Sum using python3 and enumarate - python-3.x

I want to solve the following task using 'enumerate' in python3
The way enumerate works is demonstrated below
nums=(2,7,1,15) # a tuple
for num in enumerate(nums):
print(num, 'hello')
#output
#(0, 2) hello #enumarate(nums) = (0,2)
#(1, 7) hello
#(2, 1) hello
#(3, 15) hello
for count, num in enumerate(nums):
print(num, 'hello')
# Output
#2 hello here count=0 but not displayed
#7 hello here count=1 but not displayed
#1 hello here count=2 but not displayed
#15 hello here count=3 but not displayed
Using the above principle, given an array nums of n integers, are there elements a, b, c in nums such that a + b + c = target sum? Find all unique triplets in the array which gives the sum = target sum.
A solution set for target sum =10 is:
[
[0,1,2]
]
where num at 0th index+num at 1st index+num at 2nd index(7+2+1=10).

Do you have an idea for an algorithm to solve the problem?
I would probably do something like build up two dicts listing all the ways to use the array indexes make a sum with 1 number and 2 numbers to be a certain key value.
E.g., if I had been given nums = [2, 7, 1, 2, 3], I would write code to build up a table like:
one_sum = {1: [2],
2: [0, 3],
3: [4],
7: [1]}
I would use a defaultdict from collections module to efficiently write this code (initialized as one_sum = defaultdict(list) above, though a set would also be a valid data structure for the problem).
It would be straightforward to use enumerate for this part; e.g.,
for i, n in enumerate(nums):
one_sum[n].append(i)
Then I would then build up a two_sum table this time showing all pairs of indexes that make a certain sum. Continuing with the example above, I would want to generate:
two_sum = {3: [(0, 2), (2, 3)],
4: [(2, 4)],
5: [(0, 4), (3, 4)],
8: [(1, 2)],
9: [(0, 1), (1, 3)],
10: [(1, 4)]}
(Note one way to efficiently do this is to loop through the built up one_sum, but be careful not to re-use an index e.g., don't add (2,2) or (4,4) to two_sum[4] because while nums[2] + nums[2] does add up to 4, it uses an index twice (so isn't unique). Also be careful not to double add indexes that are out of order.)
Finally I would loop through the one_sum dict, looking at indices that sum to k and then look in two_sum to see if there are any pairs of indices that sum to target-k, and if so then join the pairs together (checking to sort indices and not repeat indices in a tuple) having found a solution.
For a target of 10 this would ideally build up
three_sum = [(0,1,2), (1,2,3)]
# Note both were added from combining one_sum[1] with two_sum[9]
# nothing from combining one_sum[2] with two_sum[8] as they reuse indexes
# nothing from combining one_sum[3] as two_sum[7]==[]
# nothing new from combining one_sum[7] with two_sum[3] as (0,1,2) and (1,2,3) already present.

Here's a brute force method. It's not as efficient as this algorithm can be, mind you.
def f(nums, target):
sols = []
for i1, n1 in enumerate(nums):
for i2, n2 in enumerate(nums[i1+1:]):
for i3, n3 in enumerate(nums[i2+1:]):
if (n1 + n2 + n3 == target):
sols.append([i1, i2, i3])
return sols

Related

Keep duplciate items in list of tuples if only the first index matches between the tuples

Input [(1,3), (3,1), (1,5), (2,3), (2,4), (44,33), (33,22), (44,22), (22,33)]
Expected Output [(1,3), (1,5), (2,3), (2,4), (44,33), (44,22)]
I am trying to figure out the above and have tried lots of stuff. So far my only success has been,
for x in range(len(list1)):
if list1[0][0] == list1[x][0]:
print(list1[x])
Output: (1, 3) \n (1, 5)
Any sort of advice or help would be appreciated.
Use a collections.defaultdict(list) keyed by the first value, and keep only the values that are ultimately duplicated:
from collections import defaultdict # At top of file, for collecting values by first element
from itertools import chain # At top of file, for flattening result
dct = defaultdict(list)
inp = [(1,3), (3,1), (1,5), (2,3), (2,4), (44,33), (33,22), (44,22), (22,33)]
# For each tuple
for tup in inp:
first, _ = tup # Extract first element (and verify it's actually a pair)
dct[first].append(tup) # Collect with other tuples sharing the same first element
# Extract all lists which have two or more elements (first element duplicated at least once)
# Would be list of lists, with each inner list sharing the same first element
onlydups = [lst for firstelem, lst in dct.items() if len(lst) > 1]
# Flattens to make single list of all results (if desired)
flattened_output = list(chain.from_iterable(onlydups))
Importantly, this doesn't required ordered input, and scales well, doing O(n) work (scaling your solution naively would produce a O(n²) solution, considerably slower for larger inputs).
Another approach is the following :
def sort(L:list):
K = []
for i in L :
if set(i) not in K :
K.append(set(i))
output = [tuple(m) for m in K]
return output
output :
[(1, 3), (1, 5), (2, 3), (2, 4), (33, 44), (33, 22), (44, 22)]

What is the best possible way to find the first AND the last occurrences of an element in a list in Python?

The basic way I usually use is by using the list.index(element) and reversed_list.index(element), but this fails when I need to search for many elements and the length of the list is too large say 10^5 or say 10^6 or even larger than that. What is the best possible way (which uses very little time) for the same?
You can build auxiliary lookup structures:
lst = [1,2,3,1,2,3] # super long list
last = {n: i for i, n in enumerate(lst)}
first = {n: i for i, n in reversed(list(enumerate(lst)))}
last[3]
# 5
first[3]
# 2
The construction of the lookup dicts takes linear time, but then the lookup itself is constant.
Whreas calls to list.index() take linear time, and repeatedly doing so is then quadratic (given the number of lookups you make depends on the size of the list).
You could also build a single structure in one iteration:
from collections import defaultdict
lookup = defaultdict(lambda: [None, None])
for i, n in enumerate(lst):
lookup[n][1] = i
if lookup[n][0] is None:
lookup[n][0] = i
lookup[3]
# [2, 5]
lookup[2]
# [1, 4]
Well, someone needs to do the work in finding the element, and in a large list this can take time! Without more information or a code example, it'll be difficult to help you, but usually the go-to answer is to use another data structure- for example, if you can keep your elements in a dictionary instead of a list with the key being the element and the value being an array of indices, you'll be much quicker.
You can just remember first and last index for every element in the list:
In [9]: l = [random.randint(1, 10) for _ in range(100)]
In [10]: first_index = {}
In [11]: last_index = {}
In [12]: for idx, x in enumerate(l):
...: if x not in first_index:
...: first_index[x] = idx
...: last_index[x] = idx
...:
In [13]: [(x, first_index.get(x), last_index.get(x)) for x in range(1, 11)]
Out[13]:
[(1, 3, 88),
(2, 23, 90),
(3, 10, 91),
(4, 13, 98),
(5, 11, 57),
(6, 4, 99),
(7, 9, 92),
(8, 19, 95),
(9, 0, 77),
(10, 2, 87)]
In [14]: l[0]
Out[14]: 9
Your approach sounds good, I did some testing and:
import numpy as np
long_list = list(np.random.randint(0, 100_000, 100_000_000))
# This takes 10ms in my machine
long_list.index(999)
# This takes 1,100ms in my machine
long_list[::-1].index(999)
# This takes 1,300ms in my machine
list(reversed(long_list)).index(999)
# This takes 200ms in my machine
long_list.reverse()
long_list.index(999)
long_list.reverse()
But at the end of the day, a Python list does not seem like the best data structure for this.
As others have sugested, you can build a dict:
indexes = {}
for i, val in enumerate(long_list):
if val in indexes.keys():
indexes[val].append(i)
else:
indexes[val] = [i]
This is memory expensive, but solves your problem (depends on how often you modify the original list).
You can then do:
# This takes 0.02ms in my machine
ix = indexes.get(999)
ix[0], ix[-1]

Compare lists with multiple elements

I have a tuple as follows s=[(1,300),(250,800),(900,1000),(1200,1300),(1500,2100)]
I need to compare the upper limit of the list with the lower limit of the next list. If the lower limit of the next list is less than the upper limit of the previous list than it should throw error else it should pass.
Example:
s=[(1,300),(250,800),(900,1000),(1200,1300),(1500,2100)] - This should throw error as 250<300.If it fails for any one, it should throw error immediately.
s=[(1,300),(350,800),(900,1000)] - This should not throw error as 350>300.
I have tried something like this:
s=[(1,300),(250,800),(900,1000)]
s= (sorted(s))
print(s)
def f(mytuple, currentelement):
return mytuple[mytuple.index(currentelement) + 1]
for i in s:
j = f(s,i)
if i[0]<j[1]:
print("fail")
else:
print("pass")
But it's not working. Help me out here.
zip() combines lists (or any iterables) to a new iterable. It stops when the shortest list is exhausted. Imagine:
a = [1, 2, 3, 4]
b = ['a', 'b', 'c']
zipped = zip(a, b) # Gives: [(1, 'a'), (2, 'b'), (3, 'c')]
# 4 is skipped, because there is no element remaining in b
We can used this to get all pairs in s in an elegant, easy to read form:
s=[(1,300),(250,800),(900,1000)]
s= (sorted(s))
pairs = zip(s, s[1:]) # zip s from index 0 with s from index 1
Now that we have pairs in the form of ((a0, a1), (b0, b1)) you can easily compare if a1 > b0 in a loop:
for a,b in pairs:
if a[1] > b[0]:
print("fail")
else:
print("pass")
Two problems I see:
1) You're running into an out of bounds error, as the last element (900,1000) is trying to check the follow element which does not exist.
You can skip the last element by adding [:-1] to your loop.
2) In addition, your "if" condition seems to be backwards. You seem to be wanting to compare i[1] with j[0] instead of i[0] with j[1].
s=[(1,300),(250,800),(900,1000)]
s= (sorted(s))
print(s)
def f(mytuple, currentelement):
return mytuple[mytuple.index(currentelement) + 1]
for i in s[:-1]:
j = f(s,i)
if i[1]>j[0]:
print("fail")
else:
print("pass")
See How to loop through all but the last item of a list? for more details.

Sorted a list of tuple and return first element of tuple in python [duplicate]

This question's answers are a community effort. Edit existing answers to improve this post. It is not currently accepting new answers or interactions.
I have a dictionary of values read from two fields in a database: a string field and a numeric field. The string field is unique, so that is the key of the dictionary.
I can sort on the keys, but how can I sort based on the values?
Note: I have read Stack Overflow question here How do I sort a list of dictionaries by a value of the dictionary? and probably could change my code to have a list of dictionaries, but since I do not really need a list of dictionaries I wanted to know if there is a simpler solution to sort either in ascending or descending order.
Python 3.7+ or CPython 3.6
Dicts preserve insertion order in Python 3.7+. Same in CPython 3.6, but it's an implementation detail.
>>> x = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0}
>>> {k: v for k, v in sorted(x.items(), key=lambda item: item[1])}
{0: 0, 2: 1, 1: 2, 4: 3, 3: 4}
or
>>> dict(sorted(x.items(), key=lambda item: item[1]))
{0: 0, 2: 1, 1: 2, 4: 3, 3: 4}
Older Python
It is not possible to sort a dictionary, only to get a representation of a dictionary that is sorted. Dictionaries are inherently orderless, but other types, such as lists and tuples, are not. So you need an ordered data type to represent sorted values, which will be a list—probably a list of tuples.
For instance,
import operator
x = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0}
sorted_x = sorted(x.items(), key=operator.itemgetter(1))
sorted_x will be a list of tuples sorted by the second element in each tuple. dict(sorted_x) == x.
And for those wishing to sort on keys instead of values:
import operator
x = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0}
sorted_x = sorted(x.items(), key=operator.itemgetter(0))
In Python3 since unpacking is not allowed we can use
x = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0}
sorted_x = sorted(x.items(), key=lambda kv: kv[1])
If you want the output as a dict, you can use collections.OrderedDict:
import collections
sorted_dict = collections.OrderedDict(sorted_x)
As simple as: sorted(dict1, key=dict1.get)
Well, it is actually possible to do a "sort by dictionary values". Recently I had to do that in a Code Golf (Stack Overflow question Code golf: Word frequency chart). Abridged, the problem was of the kind: given a text, count how often each word is encountered and display a list of the top words, sorted by decreasing frequency.
If you construct a dictionary with the words as keys and the number of occurrences of each word as value, simplified here as:
from collections import defaultdict
d = defaultdict(int)
for w in text.split():
d[w] += 1
then you can get a list of the words, ordered by frequency of use with sorted(d, key=d.get) - the sort iterates over the dictionary keys, using the number of word occurrences as a sort key .
for w in sorted(d, key=d.get, reverse=True):
print(w, d[w])
I am writing this detailed explanation to illustrate what people often mean by "I can easily sort a dictionary by key, but how do I sort by value" - and I think the original post was trying to address such an issue. And the solution is to do sort of list of the keys, based on the values, as shown above.
You could use:
sorted(d.items(), key=lambda x: x[1])
This will sort the dictionary by the values of each entry within the dictionary from smallest to largest.
To sort it in descending order just add reverse=True:
sorted(d.items(), key=lambda x: x[1], reverse=True)
Input:
d = {'one':1,'three':3,'five':5,'two':2,'four':4}
a = sorted(d.items(), key=lambda x: x[1])
print(a)
Output:
[('one', 1), ('two', 2), ('three', 3), ('four', 4), ('five', 5)]
Dicts can't be sorted, but you can build a sorted list from them.
A sorted list of dict values:
sorted(d.values())
A list of (key, value) pairs, sorted by value:
from operator import itemgetter
sorted(d.items(), key=itemgetter(1))
In recent Python 2.7, we have the new OrderedDict type, which remembers the order in which the items were added.
>>> d = {"third": 3, "first": 1, "fourth": 4, "second": 2}
>>> for k, v in d.items():
... print "%s: %s" % (k, v)
...
second: 2
fourth: 4
third: 3
first: 1
>>> d
{'second': 2, 'fourth': 4, 'third': 3, 'first': 1}
To make a new ordered dictionary from the original, sorting by the values:
>>> from collections import OrderedDict
>>> d_sorted_by_value = OrderedDict(sorted(d.items(), key=lambda x: x[1]))
The OrderedDict behaves like a normal dict:
>>> for k, v in d_sorted_by_value.items():
... print "%s: %s" % (k, v)
...
first: 1
second: 2
third: 3
fourth: 4
>>> d_sorted_by_value
OrderedDict([('first': 1), ('second': 2), ('third': 3), ('fourth': 4)])
Using Python 3.5
Whilst I found the accepted answer useful, I was also surprised that it hasn't been updated to reference OrderedDict from the standard library collections module as a viable, modern alternative - designed to solve exactly this type of problem.
from operator import itemgetter
from collections import OrderedDict
x = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0}
sorted_x = OrderedDict(sorted(x.items(), key=itemgetter(1)))
# OrderedDict([(0, 0), (2, 1), (1, 2), (4, 3), (3, 4)])
The official OrderedDict documentation offers a very similar example too, but using a lambda for the sort function:
# regular unsorted dictionary
d = {'banana': 3, 'apple':4, 'pear': 1, 'orange': 2}
# dictionary sorted by value
OrderedDict(sorted(d.items(), key=lambda t: t[1]))
# OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])
Pretty much the same as Hank Gay's answer:
sorted([(value,key) for (key,value) in mydict.items()])
Or optimized slightly as suggested by John Fouhy:
sorted((value,key) for (key,value) in mydict.items())
As of Python 3.6 the built-in dict will be ordered
Good news, so the OP's original use case of mapping pairs retrieved from a database with unique string ids as keys and numeric values as values into a built-in Python v3.6+ dict, should now respect the insert order.
If say the resulting two column table expressions from a database query like:
SELECT a_key, a_value FROM a_table ORDER BY a_value;
would be stored in two Python tuples, k_seq and v_seq (aligned by numerical index and with the same length of course), then:
k_seq = ('foo', 'bar', 'baz')
v_seq = (0, 1, 42)
ordered_map = dict(zip(k_seq, v_seq))
Allow to output later as:
for k, v in ordered_map.items():
print(k, v)
yielding in this case (for the new Python 3.6+ built-in dict!):
foo 0
bar 1
baz 42
in the same ordering per value of v.
Where in the Python 3.5 install on my machine it currently yields:
bar 1
foo 0
baz 42
Details:
As proposed in 2012 by Raymond Hettinger (cf. mail on python-dev with subject "More compact dictionaries with faster iteration") and now (in 2016) announced in a mail by Victor Stinner to python-dev with subject "Python 3.6 dict becomes compact and gets a private version; and keywords become ordered" due to the fix/implementation of issue 27350 "Compact and ordered dict" in Python 3.6 we will now be able, to use a built-in dict to maintain insert order!!
Hopefully this will lead to a thin layer OrderedDict implementation as a first step. As #JimFasarakis-Hilliard indicated, some see use cases for the OrderedDict type also in the future. I think the Python community at large will carefully inspect, if this will stand the test of time, and what the next steps will be.
Time to rethink our coding habits to not miss the possibilities opened by stable ordering of:
Keyword arguments and
(intermediate) dict storage
The first because it eases dispatch in the implementation of functions and methods in some cases.
The second as it encourages to more easily use dicts as intermediate storage in processing pipelines.
Raymond Hettinger kindly provided documentation explaining "The Tech Behind Python 3.6 Dictionaries" - from his San Francisco Python Meetup Group presentation 2016-DEC-08.
And maybe quite some Stack Overflow high decorated question and answer pages will receive variants of this information and many high quality answers will require a per version update too.
Caveat Emptor (but also see below update 2017-12-15):
As #ajcr rightfully notes: "The order-preserving aspect of this new implementation is considered an implementation detail and should not be relied upon." (from the whatsnew36) not nit picking, but the citation was cut a bit pessimistic ;-). It continues as " (this may change in the future, but it is desired to have this new dict implementation in the language for a few releases before changing the language spec to mandate order-preserving semantics for all current and future Python implementations; this also helps preserve backwards-compatibility with older versions of the language where random iteration order is still in effect, e.g. Python 3.5)."
So as in some human languages (e.g. German), usage shapes the language, and the will now has been declared ... in whatsnew36.
Update 2017-12-15:
In a mail to the python-dev list, Guido van Rossum declared:
Make it so. "Dict keeps insertion order" is the ruling. Thanks!
So, the version 3.6 CPython side-effect of dict insertion ordering is now becoming part of the language spec (and not anymore only an implementation detail). That mail thread also surfaced some distinguishing design goals for collections.OrderedDict as reminded by Raymond Hettinger during discussion.
It can often be very handy to use namedtuple. For example, you have a dictionary of 'name' as keys and 'score' as values and you want to sort on 'score':
import collections
Player = collections.namedtuple('Player', 'score name')
d = {'John':5, 'Alex':10, 'Richard': 7}
sorting with lowest score first:
worst = sorted(Player(v,k) for (k,v) in d.items())
sorting with highest score first:
best = sorted([Player(v,k) for (k,v) in d.items()], reverse=True)
Now you can get the name and score of, let's say the second-best player (index=1) very Pythonically like this:
player = best[1]
player.name
'Richard'
player.score
7
I had the same problem, and I solved it like this:
WantedOutput = sorted(MyDict, key=lambda x : MyDict[x])
(People who answer "It is not possible to sort a dict" did not read the question! In fact, "I can sort on the keys, but how can I sort based on the values?" clearly means that he wants a list of the keys sorted according to the value of their values.)
Please notice that the order is not well defined (keys with the same value will be in an arbitrary order in the output list).
If values are numeric you may also use Counter from collections.
from collections import Counter
x = {'hello': 1, 'python': 5, 'world': 3}
c = Counter(x)
print(c.most_common())
>> [('python', 5), ('world', 3), ('hello', 1)]
Starting from Python 3.6, dict objects are now ordered by insertion order. It's officially in the specifications of Python 3.7.
>>> words = {"python": 2, "blah": 4, "alice": 3}
>>> dict(sorted(words.items(), key=lambda x: x[1]))
{'python': 2, 'alice': 3, 'blah': 4}
Before that, you had to use OrderedDict.
Python 3.7 documentation says:
Changed in version 3.7: Dictionary order is guaranteed to be insertion
order. This behavior was implementation detail of CPython from 3.6.
In Python 2.7, simply do:
from collections import OrderedDict
# regular unsorted dictionary
d = {'banana': 3, 'apple':4, 'pear': 1, 'orange': 2}
# dictionary sorted by key
OrderedDict(sorted(d.items(), key=lambda t: t[0]))
OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)])
# dictionary sorted by value
OrderedDict(sorted(d.items(), key=lambda t: t[1]))
OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)])
copy-paste from : http://docs.python.org/dev/library/collections.html#ordereddict-examples-and-recipes
Enjoy ;-)
This is the code:
import operator
origin_list = [
{"name": "foo", "rank": 0, "rofl": 20000},
{"name": "Silly", "rank": 15, "rofl": 1000},
{"name": "Baa", "rank": 300, "rofl": 20},
{"name": "Zoo", "rank": 10, "rofl": 200},
{"name": "Penguin", "rank": -1, "rofl": 10000}
]
print ">> Original >>"
for foo in origin_list:
print foo
print "\n>> Rofl sort >>"
for foo in sorted(origin_list, key=operator.itemgetter("rofl")):
print foo
print "\n>> Rank sort >>"
for foo in sorted(origin_list, key=operator.itemgetter("rank")):
print foo
Here are the results:
Original
{'name': 'foo', 'rank': 0, 'rofl': 20000}
{'name': 'Silly', 'rank': 15, 'rofl': 1000}
{'name': 'Baa', 'rank': 300, 'rofl': 20}
{'name': 'Zoo', 'rank': 10, 'rofl': 200}
{'name': 'Penguin', 'rank': -1, 'rofl': 10000}
Rofl
{'name': 'Baa', 'rank': 300, 'rofl': 20}
{'name': 'Zoo', 'rank': 10, 'rofl': 200}
{'name': 'Silly', 'rank': 15, 'rofl': 1000}
{'name': 'Penguin', 'rank': -1, 'rofl': 10000}
{'name': 'foo', 'rank': 0, 'rofl': 20000}
Rank
{'name': 'Penguin', 'rank': -1, 'rofl': 10000}
{'name': 'foo', 'rank': 0, 'rofl': 20000}
{'name': 'Zoo', 'rank': 10, 'rofl': 200}
{'name': 'Silly', 'rank': 15, 'rofl': 1000}
{'name': 'Baa', 'rank': 300, 'rofl': 20}
Try the following approach. Let us define a dictionary called mydict with the following data:
mydict = {'carl':40,
'alan':2,
'bob':1,
'danny':3}
If one wanted to sort the dictionary by keys, one could do something like:
for key in sorted(mydict.iterkeys()):
print "%s: %s" % (key, mydict[key])
This should return the following output:
alan: 2
bob: 1
carl: 40
danny: 3
On the other hand, if one wanted to sort a dictionary by value (as is asked in the question), one could do the following:
for key, value in sorted(mydict.iteritems(), key=lambda (k,v): (v,k)):
print "%s: %s" % (key, value)
The result of this command (sorting the dictionary by value) should return the following:
bob: 1
alan: 2
danny: 3
carl: 40
You can create an "inverted index", also
from collections import defaultdict
inverse= defaultdict( list )
for k, v in originalDict.items():
inverse[v].append( k )
Now your inverse has the values; each value has a list of applicable keys.
for k in sorted(inverse):
print k, inverse[k]
You can use the collections.Counter. Note, this will work for both numeric and non-numeric values.
>>> x = {1: 2, 3: 4, 4:3, 2:1, 0:0}
>>> from collections import Counter
>>> #To sort in reverse order
>>> Counter(x).most_common()
[(3, 4), (4, 3), (1, 2), (2, 1), (0, 0)]
>>> #To sort in ascending order
>>> Counter(x).most_common()[::-1]
[(0, 0), (2, 1), (1, 2), (4, 3), (3, 4)]
>>> #To get a dictionary sorted by values
>>> from collections import OrderedDict
>>> OrderedDict(Counter(x).most_common()[::-1])
OrderedDict([(0, 0), (2, 1), (1, 2), (4, 3), (3, 4)])
The collections solution mentioned in another answer is absolutely superb, because you retain a connection between the key and value which in the case of dictionaries is extremely important.
I don't agree with the number one choice presented in another answer, because it throws away the keys.
I used the solution mentioned above (code shown below) and retained access to both keys and values and in my case the ordering was on the values, but the importance was the ordering of the keys after ordering the values.
from collections import Counter
x = {'hello':1, 'python':5, 'world':3}
c=Counter(x)
print( c.most_common() )
>> [('python', 5), ('world', 3), ('hello', 1)]
You can also use a custom function that can be passed to parameter key.
def dict_val(x):
return x[1]
x = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0}
sorted_x = sorted(x.items(), key=dict_val)
You can use a skip dict which is a dictionary that's permanently sorted by value.
>>> data = {1: 2, 3: 4, 4: 3, 2: 1, 0: 0}
>>> SkipDict(data)
{0: 0.0, 2: 1.0, 1: 2.0, 4: 3.0, 3: 4.0}
If you use keys(), values() or items() then you'll iterate in sorted order by value.
It's implemented using the skip list datastructure.
Of course, remember, you need to use OrderedDict because regular Python dictionaries don't keep the original order.
from collections import OrderedDict
a = OrderedDict(sorted(originalDict.items(), key=lambda x: x[1]))
If you do not have Python 2.7 or higher, the best you can do is iterate over the values in a generator function. (There is an OrderedDict for 2.4 and 2.6 here, but
a) I don't know about how well it works
and
b) You have to download and install it of course. If you do not have administrative access, then I'm afraid the option's out.)
def gen(originalDict):
for x, y in sorted(zip(originalDict.keys(), originalDict.values()), key=lambda z: z[1]):
yield (x, y)
#Yields as a tuple with (key, value). You can iterate with conditional clauses to get what you want.
for bleh, meh in gen(myDict):
if bleh == "foo":
print(myDict[bleh])
You can also print out every value
for bleh, meh in gen(myDict):
print(bleh, meh)
Please remember to remove the parentheses after print if not using Python 3.0 or above
from django.utils.datastructures import SortedDict
def sortedDictByKey(self,data):
"""Sorted dictionary order by key"""
sortedDict = SortedDict()
if data:
if isinstance(data, dict):
sortedKey = sorted(data.keys())
for k in sortedKey:
sortedDict[k] = data[k]
return sortedDict
Here is a solution using zip on d.values() and d.keys(). A few lines down this link (on Dictionary view objects) is:
This allows the creation of (value, key) pairs using zip(): pairs = zip(d.values(), d.keys()).
So we can do the following:
d = {'key1': 874.7, 'key2': 5, 'key3': 8.1}
d_sorted = sorted(zip(d.values(), d.keys()))
print d_sorted
# prints: [(5, 'key2'), (8.1, 'key3'), (874.7, 'key1')]
As pointed out by Dilettant, Python 3.6 will now keep the order! I thought I'd share a function I wrote that eases the sorting of an iterable (tuple, list, dict). In the latter case, you can sort either on keys or values, and it can take numeric comparison into account. Only for >= 3.6!
When you try using sorted on an iterable that holds e.g. strings as well as ints, sorted() will fail. Of course you can force string comparison with str(). However, in some cases you want to do actual numeric comparison where 12 is smaller than 20 (which is not the case in string comparison). So I came up with the following. When you want explicit numeric comparison you can use the flag num_as_num which will try to do explicit numeric sorting by trying to convert all values to floats. If that succeeds, it will do numeric sorting, otherwise it'll resort to string comparison.
Comments for improvement welcome.
def sort_iterable(iterable, sort_on=None, reverse=False, num_as_num=False):
def _sort(i):
# sort by 0 = keys, 1 values, None for lists and tuples
try:
if num_as_num:
if i is None:
_sorted = sorted(iterable, key=lambda v: float(v), reverse=reverse)
else:
_sorted = dict(sorted(iterable.items(), key=lambda v: float(v[i]), reverse=reverse))
else:
raise TypeError
except (TypeError, ValueError):
if i is None:
_sorted = sorted(iterable, key=lambda v: str(v), reverse=reverse)
else:
_sorted = dict(sorted(iterable.items(), key=lambda v: str(v[i]), reverse=reverse))
return _sorted
if isinstance(iterable, list):
sorted_list = _sort(None)
return sorted_list
elif isinstance(iterable, tuple):
sorted_list = tuple(_sort(None))
return sorted_list
elif isinstance(iterable, dict):
if sort_on == 'keys':
sorted_dict = _sort(0)
return sorted_dict
elif sort_on == 'values':
sorted_dict = _sort(1)
return sorted_dict
elif sort_on is not None:
raise ValueError(f"Unexpected value {sort_on} for sort_on. When sorting a dict, use key or values")
else:
raise TypeError(f"Unexpected type {type(iterable)} for iterable. Expected a list, tuple, or dict")
I just learned a relevant skill from Python for Everybody.
You may use a temporary list to help you to sort the dictionary:
# Assume dictionary to be:
d = {'apple': 500.1, 'banana': 1500.2, 'orange': 1.0, 'pineapple': 789.0}
# Create a temporary list
tmp = []
# Iterate through the dictionary and append each tuple into the temporary list
for key, value in d.items():
tmptuple = (value, key)
tmp.append(tmptuple)
# Sort the list in ascending order
tmp = sorted(tmp)
print (tmp)
If you want to sort the list in descending order, simply change the original sorting line to:
tmp = sorted(tmp, reverse=True)
Using list comprehension, the one-liner would be:
# Assuming the dictionary looks like
d = {'apple': 500.1, 'banana': 1500.2, 'orange': 1.0, 'pineapple': 789.0}
# One-liner for sorting in ascending order
print (sorted([(v, k) for k, v in d.items()]))
# One-liner for sorting in descending order
print (sorted([(v, k) for k, v in d.items()], reverse=True))
Sample Output:
# Ascending order
[(1.0, 'orange'), (500.1, 'apple'), (789.0, 'pineapple'), (1500.2, 'banana')]
# Descending order
[(1500.2, 'banana'), (789.0, 'pineapple'), (500.1, 'apple'), (1.0, 'orange')]
Use ValueSortedDict from dicts:
from dicts.sorteddict import ValueSortedDict
d = {1: 2, 3: 4, 4:3, 2:1, 0:0}
sorted_dict = ValueSortedDict(d)
print sorted_dict.items()
[(0, 0), (2, 1), (1, 2), (4, 3), (3, 4)]
Iterate through a dict and sort it by its values in descending order:
$ python --version
Python 3.2.2
$ cat sort_dict_by_val_desc.py
dictionary = dict(siis = 1, sana = 2, joka = 3, tuli = 4, aina = 5)
for word in sorted(dictionary, key=dictionary.get, reverse=True):
print(word, dictionary[word])
$ python sort_dict_by_val_desc.py
aina 5
tuli 4
joka 3
sana 2
siis 1
If your values are integers, and you use Python 2.7 or newer, you can use collections.Counter instead of dict. The most_common method will give you all items, sorted by the value.
This works in 3.1.x:
import operator
slovar_sorted=sorted(slovar.items(), key=operator.itemgetter(1), reverse=True)
print(slovar_sorted)
For the sake of completeness, I am posting a solution using heapq. Note, this method will work for both numeric and non-numeric values
>>> x = {1: 2, 3: 4, 4:3, 2:1, 0:0}
>>> x_items = x.items()
>>> heapq.heapify(x_items)
>>> #To sort in reverse order
>>> heapq.nlargest(len(x_items),x_items, operator.itemgetter(1))
[(3, 4), (4, 3), (1, 2), (2, 1), (0, 0)]
>>> #To sort in ascending order
>>> heapq.nsmallest(len(x_items),x_items, operator.itemgetter(1))
[(0, 0), (2, 1), (1, 2), (4, 3), (3, 4)]

Python: How to find the average on each array in the list?

Lets say I have a list with three arrays as following:
[(1,2,0),(2,9,6),(2,3,6)]
Is it possible I get the average by diving each "slot" of the arrays in the list.
For example:
(1+2+2)/3, (2+0+9)/3, (0+6+6)/3
and make it become new arraylist with only 3 integers.
You can use zip to associate all of the elements in each of the interior tuples by index
tups = [(1,2,0),(2,9,6),(2,3,6)]
print([sum(x)/len(x) for x in zip(*tups)])
# [1.6666666666666667, 4.666666666666667, 4.0]
You can also do something like sum(x)//len(x) or round(sum(x)/len(x)) inside the list comprehension to get an integer.
Here are couple of ways you can do it.
data = [(1,2,0),(2,9,6),(2,3,6)]
avg_array = []
for tu in data:
avg_array.append(sum(tu)/len(tu))
print(avg_array)
using list comprehension
data = [(1,2,0),(2,9,6),(2,3,6)]
comp = [ sum(i)/len(i) for i in data]
print(comp)
Can be achieved by doing something like this.
Create an empty array. Loop through your current array and use the sum and len functions to calculate averages. Then append the average to your new array.
array = [(1,2,0),(2,9,6),(2,3,6)]
arraynew = []
for i in range(0,len(array)):
arraynew.append(sum(array[i]) / len(array[i]))
print arraynew
As you were told in the comments with sum and len it's pretty easy.
But in python I would do something like this, assuming you want to maintain decimal precision:
list = [(1, 2, 0), (2, 9, 6), (2, 3, 6)]
res = map(lambda l: round(float(sum(l)) / len(l), 2), list)
Output:
[1.0, 5.67, 3.67]
But as you said you wanted 3 ints in your question, would be like this:
res = map(lambda l: sum(l) / len(l), list)
Output:
[1, 5, 3]
Edit:
To sum the same index of each tuple, the most elegant method is the solution provided by #PatrickHaugh.
On the other hand, if you are not fond of list comprehensions and some built in functions as zip is, here's a little longer and less elegant version using a for loop:
arr = []
for i in range(0, len(list)):
arr.append(sum(l[i] for l in list) / len(list))
print(arr)
Output:
[1, 4, 4]

Resources