I'm using nodejs to connect with DynamoDB and I'm in a position that I am suppose to render shuffle result on the page from AWS DynamoDB.
is there anyway to get shuffled result from DynamoDB directly or any efficient way to shuffle it on the server;
I'm assuming that by shuffled you mean to ask DynamoDB to return a random item from your table. In this case the answer is basically: no - there is no such functionality built-in.
However, if you design your partition & range key schema in such a way that you can easily pick a random element then you can do it client side from your query. Depending on the density of data in the table this may require multiple queries to actually return a result but it can be done.
Let's say your results are of the form ABC-123 where ABC is a partition key and 123 is the range key value, then you could random partition key selection from the client and then try a query on that key. If the key returns some data then you can select one of the items at random. Again, based on density of data in each partition you may use a second random threshold for the query.
I hope this helps.
Related
I have a typical scenario where a consumer is calling a Azure Function (EP1) (synchronously) which then queries Azure Table storage (having 5 million records), based upon the input parameters of the Azure Function API.
Azure Table Storage has following columns:
Order Number (incremental number)
IsConfirmed (can have value Y or N)
Type of Order (can be of 6 types maximum)
Order Date
Order Details
UUID
Now when consumer queries, it generally searches with the Order Number and expects the Order Date and Order Details in response, along with Order Number.
For this, we had chosen:
Partition Key: IsConfirmed + Type of Order
Row Key: UUID
Now for 5 million records search, because of the partition key type, the search partition often runs into more than 3 million records (maximum orders have IsConfirmed as Y and Type of Order a specific one among the six types) and the Table query takes more than 5 minutes.
As a result, the consumer generally times out as the wait configured on consumer side is 60 secs.
So looking for recommendation on how to do this efficiently.
Can we choose partition key as Order Number (but that will create 5 million partitions) or a combination of Order NUmber+IsConfirmed+TypeofOrder?
Ours is a write heavy Java application and READ happens much less.
+++++++++++ UPDATE +++++++++++++++
As suggested by Gaurav in the answer, after making orderid as partition key, the query is working as expected.
Now that brings to the next problem - we do have other API queries where the order data and type are only used as input search criteria.
Since this doesn't match with the partition key, so in this 2nd type of query, its basically making a whole scan and the consumer is again timed out again.
So what should be the design to handle these types of queries.. Azure doc says creating a separate table where order type + order date becomes partition key. However that will mean that whenever we are writing to the table, we will have to write on both tables (one with orderid as part key and other as order date + type as part key).
Can we choose partition key as Order Number (but that will create 5
million partitions) or a combination of Order
NUmber+IsConfirmed+TypeofOrder?
You can certainly choose partition key as order number as there is nothing wrong in having large number of partitions. However, please keep in mind that partition key value is of string type. What you may want to do is pad your order number with some character (say 0) so that all of your orders are of the same length.
In this case, I would actually recommend that you keep the row key as empty.
You may also want to think about storing multiple copies of the same data with different partition key/row key combination depending on your querying requirements. For example, if you were to query by order date, you may want to make another copy of the data with order date as the partition key.
Generally speaking it is recommended that you do point queries (query including both partition key and row key). Next best option would be to query by partition key (you would want to keep data in partition key small so that you're not doing partition scans). All other options would result in full table scan which is not at all recommended.
You may find this link useful: https://learn.microsoft.com/en-us/azure/storage/tables/table-storage-design-guidelines.
I've been doing a lot of reading lately on Cassandra data modelling and best practices.
What escapes me is what the best practice is for choosing a partition key if I want an application to page through results via the token function.
My current problem is that I want to display 100 results per page in my application and be able to move on to the next 100 after.
From this post: https://stackoverflow.com/a/24953331/1224608
I was under the impression a partition key should be selected such that data spreads evenly across each node. That is, a partition key does not necessarily need to be unique.
However, if I'm using the token function to page through results, eg:
SELECT * FROM table WHERE token(partitionKey) > token('someKey') LIMIT 100;
That would mean that the number of results returned from my partition may not necessarily match the number of results I show on my page, since multiple rows may have the same token(partitionKey) value. Or worse, if the number of rows that share the partition key exceeds 100, I will miss results.
The only way I could guarantee 100 results on every page (barring the last page) is if I were to make the partition key unique. I could then read the last value in my page and retrieve the next query with an almost identical query:
SELECT * FROM table WHERE token(partitionKey) > token('lastKeyOfCurrentPage') LIMIT 100;
But I'm not certain if it's good practice to have a unique partition key for a complex table.
Any help is greatly appreciated!
But I'm not certain if it's good practice to have a unique partition key for a complex table.
It depends on requirement and Data Model how you should choose your partition key. If you have one key as partition key it has to be unique otherwise data will be upsert (overridden with new data). If you have wide row (a clustering key), then make your partition key unique (a key that appears once in a table) will not serve the purpose of wide row. In CQL “wide rows” just means that there can be more than one row per partition. But here there will be one row per partition. It would be better if you can provide the schema.
Please follow below link about pagination of Cassandra.
You do not need to use tokens if you are using Cassandra 2.0+.
Cassandra 2.0 has auto paging. Instead of using token function to
create paging, it is now a built-in feature.
Results pagination in Cassandra (CQL)
https://www.datastax.com/dev/blog/client-side-improvements-in-cassandra-2-0
https://docs.datastax.com/en/developer/java-driver/2.1/manual/paging/
Saving and reusing the paging state
You can use pagingState object that represents where you are in the result set when the last page was fetched.
EDITED:
Please check the below link:
Paging Resultsets in Cassandra with compound primary keys - Missing out on rows
I recently did a POC for a similar problem. Maybe adding this here quickly.
First there is a table with two fields. Just for illustration we use only few fields.
1.Say we insert a million rows with this
Along comes the product owner with a (rather strange) requirement that we need to list all the data as pages in the GUI. Assuming that there are hundred entries 10 pages each.
For this we update the table with a column called page_no.
Create a secondary index for this column.
Then do a one time update for this column with page numbers. Page number 10 will mean 10 contiguous rows updated with page_no as value 10.
Since we can query on a secondary index each page can be queried independently.
Code is self explanatory and here - https://github.com/alexcpn/testgo
Note caution on how to use secondary index properly abound. Please check it. In this use case I am hoping that i am using it properly. Have not tested with multiple clusters.
"In practice, this means indexing is most useful for returning tens,
maybe hundreds of results. Bear this in mind when you next consider
using a secondary index." From http://www.wentnet.com/blog/?p=77
If I use a randomly generated unique Id , is it correct that
the cardinality would be rather large ?
If I have a key with a low cardinality like 5 category values that the partition key can take, and I want to distribute it, the recommended approach seems to be to make partition key into composite key.
But this requires that I have to specify all the parts of a composite key in my query to retrieve all records of that key.
Even then the generated token might end up being for the same node.
Is there any way to decide on a the additional column for composite key to that would guarantee that the data would be distributed ?
The thing is that with cassandra you actually want to have partitioning keys "known" so that you can access the data when you need it. I'm not sure what you mean when you say large cardinality on partitioning key. You would get a lot of partitions in the cluster. This is usually o.k.
If you want to distribute the data around the cluster. You can use artificial columns. And this approach is sometimes also called bucketing. Basically if you want to keep 100k+ or in never version 1 million+ columns it's o.k. to split this data into partitions.
Some people simply use a trick and when they insert the data they add some artificial bucket column to partition ... let's say random(1-10) and then when they are reading the data out they simply issue 10 queries or use an in operator and then fetch the data and merge it on the client side. This approach has many benefits in that it prevents appearance of "hot rows" in the cluster.
Chances for every key are more or less 1/NUM_NODES that it will end on the same node. So I would say most of the time this is not something you should worry about too much. Unless you have number of partitions that is smaller then the number of nodes in the cluster.
Basically there are two choices for additional column random (already described) or some function based on some input data i.e. when using time series data and you decide to bucket based on the month you can always calculate the month based on the data that you are going to insert and then you just put it in bucket. When you are retrieving the data then you know ... o.k. I'm looking something in May 2016 and then you know how to select the appropriate bucket.
I have a following CQL table (a bit simplified for clarity):
CREATE TABLE test_table (
user uuid,
app_id ascii,
domain_id ascii,
props map<ascii,blob>,
PRIMARY KEY ((user), app_id, domain_id)
)
The idea is that this table would contain many users (i.e. rows, say, dozens of millions). For each user there would be a few domains of interest and there would be a few apps per domain. And for each user/domain/app there would be a small set of properties.
I need to scan this entire table and load its contents in chunks for given app_id and domain_id. My idea was to use the TOKEN function to be able to read the whole data set in several iterations. So, something like this:
SELECT props FROM test_table WHERE app_id='myapp1'
AND domain_id='mydomain1'
AND TOKEN(user) > -9223372036854775808
AND TOKEN(user) < 9223372036854775807;
I was assuming that this query would be efficient because I specify the range of the row keys and by specifying the values of the clustering keys I effectively specify the column range. But when I try to run this query I get the error message "Bad Request: Cannot execute this query as it might involve data filtering and thus may have unpredictable performance. If you want to execute this query despite the performance unpredictability, use ALLOW FILTERING".
I have limited experience with Cassandra and I assumed that this sort of query would map into get_range_slices() call, which accepts the slice predicate (i.e. the range of columns defined by my app_id/domain_id values) and the key range defined by my token range. It seems either I misunderstand how this sort of query is handled or maybe I misunderstand about the efficiency of get_range_slices() call.
To be more specific, my questions are:
- if this data model does make sense for the kind of query I have in mind
- if this query is expected to be efficient
- if it is efficient, then why am I getting this error message asking me to ALLOW FILTERING
My only guess about the last one was that the rows that do not have the given combination of app_id/domain_id would need to be skipped from the result.
--- update ----
Thank for all the comments. I have been doing more research on this and there is still something that I do not fully understand.
In the given structure what I am trying to get is like a rectangular area from my data set (assuming that all rows have the same columns). Where top and the bottom of the rectangle is determined by the token range (range) and the left/right sides are defined as column range (slice). So, this should naturally transform into get_range_slices request. My understanding (correct me if I am wrong) that the reason why CQL requires me to put ALLOW FILTERING clause is because there will be rows that do not contain the columns I am looking for, so they will have to be skipped. And since nobody knows if it will have to skip every second row or first million rows before finding one that fits my criteria (in the given range) - this is what causes the unpredictable latency and possibly even timeout. Am I right? I have tried to write a test that does the same kind of query but using low-level Astyanax API (over the same table, I had to read the data generated with CQL, it turned out to be quite simple) and this test does work - except that it returns keys with no columns where the row does not contain the slice of columns I am asking for. Of course I had to implement some kind of simple paging based on the starting token and limit to fetch the data in small chunks.
Now I am wondering - again, considering that I would need to deal with dozens of millions of users: would it be better to partially "rotate" this table and organize it in something like this:
Row key: domain_id + app_id + partition no (something like hash(user) mod X)
Clustering key: column partition no (something like hash(user) >> 16 mod Y) + user
For the "column partition no"...I am not sure if it is really needed. I assume that if I go with this model I will have relatively small number of rows (X=1000..10000) for each domain + app combination. This will allow me to query the individual partitions, even in parallel if I want to. But (assuming the user is random UUID) for 100M users it will result in dozens or hundreds of thousands of columns per row. Is it a good idea to read one such a row in one request? It should created some memory pressure for Cassandra, I am sure. So maybe reading them in groups (say, Y=10..100) would be better?
I realize that what I am trying to do is not what Cassandra does well - reading "all" or large subset of CF data in chunks that can be pre-calculated (like token range or partition keys) for parallel fetching from different hosts. But I am trying to find a pattern that is the most efficient for such a use case.
By the way, the query like "select * from ... where TOKEN(user)>X and TOKEN(user)
Short answer
This warning means that Cassandra would have to read non-indexed data and filter out the rows that don't satisfy the criteria. If you add ALLOW FILTERING to the end of query, it will work, however it will scan a lot of data:
SELECT props FROM test_table
WHERE app_id='myapp1'
AND domain_id='mydomain1'
AND TOKEN(user) > -9223372036854775808
AND TOKEN(user) < 9223372036854775807
ALLOW FILTERING;
Longer explanation
In your example primary key consists of two parts: user is used as partition key, and <app_id, domain_id> form remaining part. Rows for different users are distributed across the cluster, each node responsible for specific range of token ring.
Rows on a single node are sorted by the hash of partition key (token(user) in your example). Different rows for single user are stored on a single node, sorted by <app_id, domain_id> tuple.
So, the primary key forms a tree-like structure. Partition key adds one level of hierarchy, and each remaining field of a primary key adds another one. By default, Cassandra processes only the queries that return all rows from the continuos range of the tree (or several ranges if you use key in (...) construct). If Cassandra should filter out some rows, ALLOW FILTERING must be specified.
Example queries that don't require ALLOW FILTERING:
SELECT * FROM test_table
WHERE user = 'user1';
//OK, returns all rows for a single partition key
SELECT * FROM test_table
WHERE TOKEN(user) > -9223372036854775808
AND TOKEN(user) < 9223372036854775807;
//OK, returns all rows for a continuos range of the token ring
SELECT * FROM test_table
WHERE user = 'user1'
AND app_id='myapp1';
//OK, the rows for specific user/app combination
//are stored together, sorted by domain_id field
SELECT * FROM test_table
WHERE user = 'user1'
AND app_id > 'abc' AND app_id < 'xyz';
//OK, since rows for a single user are sorted by app
Example queries that do require ALLOW FILTERING:
SELECT props FROM test_table
WHERE app_id='myapp1';
//Must scan all the cluster for rows,
//but return only those with specific app_id
SELECT props FROM test_table
WHERE user='user1'
AND domain_id='mydomain1';
//Must scan all rows having user='user1' (all app_ids),
//but return only those having specific domain
SELECT props FROM test_table
WHERE user='user1'
AND app_id > 'abc' AND app_id < 'xyz'
AND domain_id='mydomain1';
//Must scan the range of rows satisfying <user, app_id> condition,
//but return only those having specific domain
What to do?
In Cassandra it's not possible to create a secondary index on the part of the primary key. There are few options, each having its pros and cons:
Add a separate table that has primary key ((app_id), domain_id, user) and duplicate the necessary data in two tables. It will allow you to query necessary data for a specific app_id or <app_id, domain_id> combination. If you need to query specific domain and all apps - third table is necessary. This approach is called materialized views
Use some sort of parallel processing (hadoop, spark, etc) to perform necessary calculations for all app/domain combinations. Since Cassandra needs to read all the data anyway, there probably won't be much difference from a single pair. If the result for other pairs might be cached for later use, it will probably save some time.
Just use ALLOW FILTERING if query performance is acceptable for your needs. Dozens of millions partition keys is probably not too much for Cassandra.
Presuming you are using the Murmur3Partitioner (which is the right choice), you do not want to run range queries on the row key. This key is hashed to determine which node holds the row, and is therefore not stored in sorted order. Doing this kind of range query would therefore require a full scan.
If you want to do this query, you should store some known value as a sentinel for your row key, such that you can query for equality rather than range. From your data it appears that either app_id or domain_id would be a good choice, since it sounds like you always know these values when performing your query.
I am building a web site that has a wish list. I want to store the wish list(s) in azure table storage, but also want the user to be able to sort their wish list, when viewing it, a number of different ways - date added, date added reversed, item name etc. I also want to implement paging which I believe I can implement by making use of the continuation token.
As I understand it, "order by" isn't implemented and the order that results are returned from table storage is based on the partition key and row key. Therefore if I want to implement the paging and sorting that I describe, is the best way to implement this by storing the wish list multiple times with different partition key / row key?
In this simple case, it is likely that the wish list won't be that large and I could in fact restrict the maximum number of items that can appear in the list, then get rid of paging and sort in memory. However, I have more complex cases that I also need to implement paging and sorting for.
On today’ s hardware having 1000’s of rows to hold, in a list, in memory and sort is easily supportable. What the real issue is, how possible is it for you to access the rows in table storage using the Keys and not having to do a table scan. Duplicating rows across multiple tables could get quite cumbersome to maintain.
An alternate solution, would be to temporarily stage your rows into SQL Azure and apply an order by there. This may be effective if your result set is too large to work in memory. For best results the temporary table would need to have the necessary indexes.
Azure Storage keeps entities in lexicographical order, indexed by Partition Key as primary index and Row Key as secondary index. In general for your scenario it sounds like UserId would be a good fit for a partition key, so you have the Row Key to optimize for per each query.
If you want the user to see the wish lists latest on top, then you can use the log tail pattern where your row key will be the inverted Date Time Ticks of the DateTime when the wish list was entered by the user.
https://learn.microsoft.com/azure/storage/tables/table-storage-design-patterns#log-tail-pattern
If you want user to see their wish lists ordered by the item name you could have your item name as your row key, and so the entities will naturally sorted by azure.
When you are writing the data you may want to denormalize the data and do multiple writes with these different row key schemas. Since you will have the same partition key as user id, you can at that stage do a batch insert operation and not worry about consistency since azure table batch operations are atomic.
To differentiate the different rowkey schemas, you may want to prepend each with a const string value. Like your inverted ticks row key value for instance woul dbe something like "InvertedTicks_[InvertedDateTimeTicksOfTheWishList]" and your item names row key value would be "ItemName_[ItemNameOfTheWishList]"
Why not do all of this in .net using a List.
For this type of application I would have thought SQL Azure would have been more appropriate.
Something like this worked just fine for me:
List<TableEntityType> rawData =
(from c in ctx.CreateQuery<TableEntityType>("insysdata")
where ((c.PartitionKey == "PartitionKey") && (c.Field == fieldvalue))
select c).AsTableServiceQuery().ToList();
List<TableEntityType> sortedData = rawData.OrderBy(c => c.DateTime).ToList();