I am compiling a series of static libraries with precompiled header with MSVC2017 and CMake. So the generating is done manually:
Generating PCH:
/Yc /Fp"C:\FullPath\precomp.pch"
Using:
/Yu"C:\FullPath\src\pch.h" /FI"C:\FullPath\src\pch.h" /Fp"C:\FullPath\precomp.pch"
This all works fine. The libs compile and link fine (and a lot faster, so the precompiling works).
Now I want to use these libs in another project and get linker errors for the symbols used by the precompiled header. I can fix these errors by adding the precompiledHeader obj into the new project, but I dont like it. The projects which are depending on the libs should not be aware whether the libs were built with precompiled header or not. My Question: Is there a way to realize this with static libs that already links in all objects needed so that depending projects just link? I could imagine if it were shared libs it work out of the box. Is there a way to include the symbols of pch.cpp.obj into the using lib?
Related
The problem I had is solved. I'm posting this to solicit an explanation as to why the solution actually works. I've gotten great feedback here before.
I have a legacy code base that used a very simplistic build system, and my project is to migrate that to Autotools for customization and, particularly, building shared libraries. The main library is written in C, but must also be linkable from Fortran (for legacy purposes), and is distributed with some test codes in F77. The authors organized the source code into modules...
src_module1/
src_module2/
...
testc/
testf77/
Their built the library lib/libmain.a by compiling code in the src_*/ directories and archiving the objects with ranlib.
My first approach was to build a shared library from each src_*/ separately and "link" all of these into one shared library. Using Autotools, the src_module1/Makefile.am would contain
noinst_LTLIBRARIES = libmodule1.la
libmodule1_la_SOURCES = ...
and so on for the other modules, and finally the lib/Makefile.am would need only:
lib_LTLIBRARIES = libmain.la
libmain_la_SOURCES =
libmain_la_LIBADD = $(top_srcdir)/src_module1/libmodule1.la ...
This seemed to work perfectly. However, when the code in testc/ was compiled and linked against libmain.la, a "symbols not found" error was issued.
Thinking that this was an issue with libtool or shared libraries, I tried building static only, basically changing all .la to .a and all _LTLIBRARIES to _LIBRARIES. Same problem. This time, however, noticing the error "ranlib: warning for library: libmain.a the table of contents is empty (no object file members in the library define global symbols)" when trying to link libmain.a itself.
The solution that I found seems like a hack. I did not build Makefiles for any of the src_*/ directories, but instead used only for the lib/ directory and its Makefile.am had the lines:
lib_LTLIBRARIES = libmain.la
libmain_la_SOURCES = [all sources from all ../src_modules/ ]
This worked. The compiled programs in testc/ linked against libmain.la without issue. One of the "modules" is a set of Fortran bindings that wrap other C functions in the library. Even the Fortran codes in testf77/ linked against libmain.la properly.
Could someone carefully explain what happens when libtool builds a shared library? Or even when building a static library? Why is it that several static libraries can't be linked together to make one static library? Why are symbols only available when libtool/ranlib builds the library "from sources"? And what about installing a shared/static library, i.e. moving it to the /usr/local/lib --- what happens there? The Wikipedia article on static and shared libraries isn't really detailed enough for me.
I do appreciate all efforts to make sense of my longwinded question.
What you first tried ought to work. I am using this kind of setup all the time (in a C++ context). It's also documented, and part of the Automake test suite (although maybe not with Fortran).
A libtool library that is not installable, i.e., one declared with noinst_LTLIBRARIES, is called a libtool convenience library. That noinst_ makes a big difference in what is built. Even if Libtool is configured to build shared libraries, a libtool convenience library is not actually a shared library: it is just a set of object files (compiled as PIC so that they can be latter be used in a shared library) stored in an archive. You can use a libtool convenience library anywhere using this set of objects would make sense, e.g., to build a shared library.
When multiple libtool convenience libraries are LIBADDed to an installable libtool library (such as your libmain.la), Libtool has to unpack the archives containing the objects of each convenience library and link them into the final library.
There is a trap that is worth noting here: when building a shared library out of
convenience libraries, if the _SOURCES variable is empty Automake does not know which linker to use and default to the C linker. If you want to trick Automake into using the linking rule for some specific language, you can declare a nodist_EXTRA_..._SOURCES source file that do not have to exist. (See the Libtool Convenience Libraries section of the Automake manual for an example.)
Maybe that was your problem? If you have some Fortran files in the sources of some of your modules (your description suggests these are only C files), the Fortran linker will be used to build libmain.la only if a Fortran file appears in the source files declared for that libtool library. And the C linker will be used when libmain_la_SOURCES is empty.
Otherwise, I have no idea why it didn't work.
There is an small error in your example:
libmain_la_LIBADD = $(top_srcdir)/src_module1/libmodule1.la
should be
libmain_la_LIBADD = $(top_builddir)/src_module1/libmodule1.la
because the library is not created in the source directory. However I assume this is just a typo, and you won't see the difference unless you do a VPATH build or run make distcheck.
Your second try, using _LIBRARIES without Libtool is not expected to work.
_LIBRARIES can only be used to declare static archives, and in this case _LIBADD may only contain object files, not other static archives. Unpacking an archive to reuse its objects into another archive can be tricky to do portably. Automake's answer to this problem has always been: install Libtool and use _LTLIBRARIES (Libtool can be configured to build only static libraries).
When linking against libraries using the -l option (say -lfoo), gcc will prefer a shared object to a static library if both are found (will prefer libfoo.so to libfoo.a). Is there a way to make gcc prefer the static library, if both are found?
The issue I'm trying to solve is the following: I'm creating a plugin for an application (the flight simulator called X-Plane), with the following constraints:
the plugin is to be in the form of a 32 bit shared object, even when running on a 64 bit system
the running environment does not provide a convenient way to load shared objects which are not in the 'normal' locations, say /usr/lib or /usr/lib32:
one cannot expect the user to set LD_PRELOAD or LD_LIBRARY_PATH to find shared objects shipped with my plugin
the X-Plane running environment would not add my plugins directory to ``LD_LIBRARY_PATH, before dynamically loading the plugin shared object, which would allow me to ship all my required shared objects alongside my plugin shared object
one cannot expect 64 bit users to install 32 bit shared objects that are non-trivial (say, are not included in the ia32-libs package on ubuntu)
to solve the above constraints, a possible solution is to link the generated shared object against static, 32 bit versions of all non-trivial libraries used. but, when installing such libraries, usually both static and dynamic versions are installed, and thus gcc will always link against the shared object instead of the static library.
of course, moving / removing / deleting the shared objects in question, and just leaving the static libraries in say /usr/lib32, is a work-around, but it is not a nice one
note:
yes, I did read up on how to link shared objects & libraries, and I'm not trying to creatae a 'totally statically linked shared object'
yes, I tried -Wl,-static -lfoo -Wl,-Bdynamic, but didn't bring the expected results
yes, I tried -l:libfoo.a as well, but this didn't bring the expected results either
You can specify the full path to the static libs without the -l flag to link with those.
gcc ... source.c ... /usr/lib32/libmysuperlib.a ...
Just add the .a file to the link line without -l as if it were a .o file.
It's dated, but may work: http://www.network-theory.co.uk/docs/gccintro/gccintro_25.html
(almost end of the page)
"As noted earlier, it is also possible to link directly with individual library files by specifying the full path to the library on the command line."
I'm trying to build my application with MSVC 2010 instead of GCC. With GCC everything works fine. My app uses boost_system and boost_thread libraries.
I built boost with VC2010 in "system" layout, that means the libraries are named just libboost_system.lib (and not libboost_system_compiler_threading_version_wtf_snafu.lib)
The libs reside in C:\Boost\lib,
the Makefile specifies
LFLAGS = /NOLOGO /INCREMENTAL:NO /SUBSYSTEM:CONSOLE
LIBS = /LIBPATH:C:/Boost/lib libboost_system.lib libboost_thread.lib Ws2_32.lib
when invoking nmake it compiles, but when trying to link it quits with
LINK : fatal error LNK1104: cannot open file 'libboost_date_time-vc100-mt-1_43.lib
I mean seriously, WTF? I told it to link libboost_systen.lib and libboost_thread.lib how come it tries to link libboost_data_time and why does it assume I built the libs in "tagged" layout??
How can I stop MSVC trying to be smart and guess what I might have wanted to link?
Thanks,
Philipp
This is a feature of the Boost libs with compatible compilers for automatic linking.
(Those convoluted library names cover the myriad of threading and linking options that are available on the platform; there are good reasons to use that convention on Windows...)
More information here:
http://www.boost.org/doc/libs/1_33_1/more/getting_started.html#auto-link
I can't find a page for a more recent version, but I believe the BOOST_ALL_NO_LIB and related options are all still valid in 1.43.
Assuming you are auto-linking (i.e. you've defined BOOST_ALL_DYN_LINK or library specific equivalents).
For layout 'system' you have to define the preprocessor macro:
BOOST_AUTO_LINK_NOMANGLE
to link to the correct library names.
For layout 'tagged' you have to define the preprocessor macro:
BOOST_AUTO_LINK_TAGGED
to link to the correct library names.
I don't know if you could do this override for some libraries and keep the default for others. That would be a very cumbersome setup I'd imagine.
In every platform there are various versions of a given library: multi-threaded, debug, dynamic, etc..
Correct me if I am wrong here, but in Linux an object can link to any version of a library just fine, regardless of how its compiled. For example, there is no need to use any special flags at compile time to specify whether the link will eventually be to a dynamic or a static version of the run-time libraries (clarification: I am not talking about creating dynamic/static libraries, I am talking about linking to them - so -fPIC doesn't apply). Same goes for debug or optimized version of libraries.
Why in MSVC (Windows in general with other compilers. true?) I need to recompile the code every time in order to link to different versions of libraries? I am talking the /MD, /MT, /MTd, /MDd, etc flags. Is the code actually using different system headers each time. If so, why?
I would really appreciate any pointers to solid documentation that discusses these library matters in Windows for a C/C++ programmer..
thanks!
The compiler setting does very little other than simple change some macro definitions. Its microsoft's c-runtime header files that change their behaviour based on the runtime selected.
First, the header files use a # pragma directive to embed in the object file a directive specifying which .lib file to include, choosing one of: msvcrt.lib, msvcrtd.lib, libcmt.lib and mibcmtd.lib
The directives look like this
#ifdef <release dll runtime>
#pragma comment(lib,"msvcrt.lib")
#endif
Next, it also modifies a macro definition used on all c-rt functions that adds the __declspec(dllimport) directive if a dll runtime was selected. the effect of this directive is to change the imported symbol from, say, '_strcmp' to '__imp__strcmp'.
The dll import libraries (msvcrt.lib and msvcrtd.lib) export their symbols (to the linker) as __imp_<function name>, which means that, in the Visual C++ world, once you have compiled code to link against the dll runtimes you cannot change your mind - they will NOT link against a static runtime.
Of course, the reverse is not the case - dll import libraries actually export their public symbols both ways: with and without the __imp_ prefix.
Which means that code built against a static runtime CAN be later co-erced into linking with the dll or static runtimes.
If you are building a static library for other consumers, you should ensure that your compiler settings include:
One of the static library settings, so that consumers of your .lib can choose themselves which c-runtime to use, and
Set the 'Omit Default Library Name' (/Zl)flag. This tells the compiler to ignore the #pragma comment(lib,... directives, so the obj files and resulting lib does NOT have any kind of implicit runtime dependency. If you don't do this, users of your lib who choose a different runtime setting will see confusing messages about duplicate symbols in libc.lib and msvcrt.lib which they will have to bypass by using the ignore default libraries flag.
These using these compiler options have two effects. The automatically #define a macro that may be used by header files (and your own code) to do different things. This effects only a small part of the C runtime, and you can check the headers to see if it's happening in your case.
The other thing is that the C++ compiler embeds a comment in your object file that tells the linker to automatically include a particular flavor of the MSVC runtime, whether you specify that library at link time or not.
This is convenient for small programs, where you simply type at a command prompt cl myprogram.cpp to compile and link, producing myprogram.exe.
You can defeat automatic linking of the commented-in flavor of the c-runtime by passing /nodefaultlib to the linker. And then specify a different flavor of the c-runtime instead. This will work if you are careful not to depend on the #defines for _MT and
_DLL (keep in mind that the standard C headers might be looking at these also).
I don't recommend this, but if you have a reason to need to do this, it can be made to work in most cases.
If you want to know what parts of the C header files behave differently, you should just search for _MT and _DLL in the headers and see.
All of the options use the same header files, however they all imply different #define which affect the header files. So they need to be recompiled.
The switches also link to the appropriate library, but the recompile is not because of the linking.
See here for a list of what is defined when you use each.
I don't know if it's possible to do this, but I would like the /NODEFAULTLIB to be applied to a static library project.
I have many application projects (A.exe, B.dll, C.dll) that use a common static library D.lib.
This library has a lot of code and also has other .lib dependencies as well. One of them is the openssl library, which seems to have been built for win32 against the Release version of the CRT (i don't have the original project/sources).
So far, to avoid the mixing of the Release/Debug versions of CRT, I have to put the /NODEFAULTLIB:msvcrt.lib linker directive in all leaf projects (A.exe, B.dll). This works but I think it's not the ideal way of dealing with that issue.
I tried to put this property in D.lib project, but it has no effect.
Is there a way to force msvc++ to ignore the msvcrt.lib dependency from the 3rd party library?
A .lib does not have any linker settings because you don't link it, you link to it. A .lib is just an archive of .obj files, sort of like an uncompressed .zip file - that's why you have to put the setting on all projects that link to it.
If you're using VS2005+ you could use property sheets so that you only have to put the setting in one place and then use that property sheet in all projects.
However, OpenSSL is just that - Open Source, so you should be able to get the source for the version you are using and build it again (and add it to your version control system of course). I thought OpenSSL could be built as a DLL or LIB, which would solve your problem as the DLL would not interfere with the linking of your code.
Failing that, you always have the option of slitting your functionality out into a separate DLL so that you only have issues with one project.
To prevent your distributed static link library from depending on a specific MSVC runtime library you need to set this compiler option (in Visual Studio 2010 it looks like):
Configuration Properties -> C/C++ -> Advanced -> Omit Default Library Name = Yes (/ZI)
Now your users can link to your release built static lib from their debug build and not try to link to the incorrect runtime library causing problems, as well as linkers warnings.
Note that may cause link errors if your library actually depends on a specific runtime library or its behavior, and compatible components are not provided in some other way.
My understanding is that if library LIB in linked statically into a DLL, the DLL contains already all relevant code from LIB. Therefore, this coupling cannot be removed. This is just based on my understanding of statical linking, not on experiments.