parquet column pruning in spark - apache-spark

I know parquet supports read user selected columns only. But when I use
dataframe.read.parquet().select(col*)
to read the data, it looks like still read the whole file. Is there any way in spark to read the selected column chunks only?

Related

spark parquet partitioning which remove the partition column

If am using df.write.partitionby(col1).parquet(path) .
the data will remove the partition column on the data.
how to avoid it ?
You can duplicate col1 before writing:
df.withColumn("partition_col", col("col1")).write.partitionBy("partition_col").parquet(path)
Note that this step is not really necessary, because whenever you read a Parquet file in a partitioned directory structure, Spark will automatically add that as a new column to the dataframe.
Actually spark does not remove the column but it uses that column in a way to organize the files so that when you read the files it adds that as a column and display that to you in a table format. If you check the schema of the table or the schema of the dataframe you would still see that as a column in the table.
Also you are partitioning your data so you know how that data from table is queried frequently and based on that information you might have decided to partition the data so that your reads becomes faster and more efficient.

Parquet Format - split columns in different files

On the parquet documentation is explicitly mentioned that the design supports splitting the metadata and data into different files , including also the possibility that different column groups can be stored in different files.
However , I could not find any instructions on how to achieve that. In my use case I would like to store the metadata in one file , store columns 1-100 data in one file and 101-200 in a second file .
Any idea how to achieve this ?
If you are using PySpark, it's as easy as this:
df = spark.createDataFrameFrom(...)
df.write.parquet('file_name.parquet')
and it will create a folder called file_name.parquet in the default location in HDFS. You can just create two dataframes, one with columns 1-100, and the other dataframe with columns 101-200 and save them separately. It automatically will save the metadata, if you mean the data frame schema.
You can select a range of columns like this:
df_first_hundred = df.select(df.columns[:100])
df_second_hundred = df.select(df.columns[100:])
Save them as separate files:
df_first_hundred.write.parquet('df_first_hundred')
df_second_hundred.write.parquet('df_second_hundred')

PySpark: how to read in partitioning columns when reading parquet

I have data stored in a parquet files and hive table partitioned by year, month, day. Thus, each parquet file is stored in /table_name/year/month/day/ folder.
I want to read in data for only some of the partitions. I have list of paths to individual partitions as follows:
paths_to_files = ['hdfs://data/table_name/2018/10/29',
'hdfs://data/table_name/2018/10/30']
And then try to do something like:
df = sqlContext.read.format("parquet").load(paths_to_files)
However, then my data does not include the information about year, month and day, as this is not part of the data per se, rather the information is stored in the path to the file.
I could use sql context and a send hive query with some select statement with where on the year, month and day columns to select only data from partitions i am interested in. However, i'd rather avoid constructing SQL query in python as I am very lazy and don't like reading SQL.
I have two questions:
what is the optimal way (performance-wise) to read in the data stored as parquet, where information about year, month, day is not present in the parquet file, but is only included in the path to the file? (either send hive query using sqlContext.sql('...'), or use read.parquet,... anything really.
Can i somehow extract the partitioning columns when using the
approach i outlined above?
Reading the direct file paths to the parent directory of the year partitions should be enough for a dataframe to determine there's partitions under it. However, it wouldn't know what to name the partitions without the directory structure /year=2018/month=10, for example.
Therefore, if you have Hive, then going via the metastore would be better because the partitions are named there, Hive stores extra useful information about your table, and then you're not reliant on knowing the direct path to the files on disk from the Spark code.
Not sure why you think you need to read/write SQL, though.
Use the Dataframe API instead, e.g
df = spark.table("table_name")
df_2018 = df.filter(df['year'] == 2018)
df_2018.show()
Your data isn't stored in a way optimal for parquet so you'd have to load files one by one and add the dates
Alternatively, you can move the files to a directory structure fit for parquet
( e.g. .../table/year=2018/month=10/day=29/file.parquet)
then you can read the parent directory (table) and filter on year, month, and day (and spark will only read the relevant directories) also you'd get these as attributes in your dataframe

spark reading missing columns in parquet

I have parquet files which I need to read from spark. Some files have few columns missing which are present in new files.
Since I do not know which files have column missing, I need to read all the files in spark. I have list of columns that I need to read. It may also be the case that all the files may have some column missing. I need to put a null in those columns which are missing.
When I try to do a
sqlContext.sql('query') it gives me error saying that columns are missing
If I define the schema and do a
sqlContext.read.parquet('s3://....').schema(parquet_schema)
It gives me the same error.
Help me here
You need to use parquet schema evolution strategy to address this situation.
As defined in the spark documentation
Users can start with a simple schema, and gradually add more columns to the schema as needed. In this way, users may end up with multiple Parquet files with different but mutually compatible schemas. The Parquet data source is now able to automatically detect this case and merge schemas of all these files.
All you need to do is
val mergedDF = spark.read.option("mergeSchema", "true").parquet("'s3://....'")
This will give you parquet data with complete schema.
Pain point
In case your schema is non compatible for example one parquet file has col1 DataType as String and another parquet file has col1 DataType as Long.
Then the merge schema will fail.

How to store Spark data frame as a dynamic partitioned Hive table in Parquet format?

The current raw data is on Hive. I want to do a join of several partitioned terabytes Hive tables, and then output the result as a partitioned Hive table in Parquet format.
I am considering to load all partitions of Hive tables as Spark dataframes. And then do join, group by, and etc. Is this the right way to do?
Finally I will need to save the data, can we save Spark dataframe as a dynamic partitioned Hive table in Parquet format? How to deal with the metadata?
If one of the several data set is sufficiently smaller than the other, you may want to consider using Broadcast for data transfer efficiency.
Depending on the nature of the data, you could try group by, then join. So each machine only need to process a specific set of data, reduce the amount of data transferred during task run.
Hive supports storing data into Parquet format directly. https://cwiki.apache.org/confluence/display/Hive/Parquet. Have you given a try?

Resources