Spark DataFrame filtering gives inconsistent output - apache-spark

I have a MongoDB collection with 26,000 records which I am reading into a DataFrame. It has a column, column_1 with String value column_1_value across all the records. I am trying to filter the DataFrame and get the count as follows
val readConfig = ReadConfig(Map("collection" -> collectionName,"spark.mongodb.input.readPreference.name" -> "primaryPreferred", "spark.mongodb.input.database" -> dataBaseName, "spark.mongodb.input.uri" -> hostName))
val dataFrame = MongoSpark.load(spark, readConfig)
df.filter(df.col("column_1") === "column_1_value").count()
Where spark is the instance of SparkSession.
The MongoDB record structure looks something like this.
{
"_id" : ObjectId("SOME_ID"),
"column_1" : "column_1_value",
"column_2" : SOME_VALUE,
"column_3" : SOME_OTHER_VALUE
}
There is no nested structure, and all the records have the same set of fields. I am not accessing the DB during any time while Spark is running
As all the records have the same value of column_1, I expected to get the DataFrame size itself as the output, but instead I am getting a lower value. Not only that, I am getting different outcomes each time I run the above. The outcome is normally varying between 15,000 and 24,000.
But the same approach seems to work when the collection size is less, around 5,000.
I have tried the following approaches with no success
Used equalTo instead of ===
Used $column_1
Used isin
Used df.where instead of df.filter
Used createOrReplaceTempView and ran SQL query
The only thing that seems to work is either df.cache() or df.persist(), none of which I think will be good for the overall performance when working with large data.
What can be the possible reason for this behavior and the ways by which this can be resolved?
My Spark version is 2.2.0, MongoDB version is 3.4. I am running Spark in local mode, with 16 GB of RAM and an 8 core processor.
Edit 1
Tried changing the Mongo Spark connector partitioning policy as follows, but with no success.
val readConfig = ReadConfig(Map("collection" -> collectionName,"spark.mongodb.input.readPreference.name" -> "primaryPreferred", "spark.mongodb.input.database" -> dataBaseName, "spark.mongodb.input.uri" -> hostName, "spark.mongodb.input.partitionerOptions" -> "MongoPaginateBySizePartitioner"))
val dataFrame = MongoSpark.load(spark, readConfig)
df.count()
df.filter(df.col("column_1") === "column_1_value").count()
The first count returns the correct value, even with the default partitioning strategy, which leads me to believe that the Mongo Connector is working fine.

Related

Spark-Cassandra: repartitionByCassandraReplica or converting dataset to JavaRDD and back do not maintain number of partitions?

So, I have a 16 node cluster where every node has Spark and Cassandra installed with a replication factor of 3 and spark.sql.shuffle.partitions of 96. I am using the Spark-Cassandra Connector 3.0.0 and I am trying to join a dataset with a cassandra table on the partition key, while also using .repartitionByCassandraReplica.
However repartitionByCassandraReplica is implemented only on RDDs so I am converting my dataset to JavaRDD, do the repartitionByCassandraReplica, then converting it back to dataset and do a Direct Join with the cassandra table. It seems though, that in the process of that the number of partitions is "changing" or is not as expected.
I am doing a PCA on 4 partition keys which have some thousands of rows and for which I know the nodes where they are stored according to nodetool getendpoints . It looks like not only the number of partitions is changing but also the nodes where data are pulled are not the ones that actually have the data. Below is the code.
//FYI experimentlist is a List<String> which is converted to Dataset,then JavaRDD, then partitioned
//according to repartitionByCassandraReplica and then back to Dataset. The table with which I want to
//join it, is called experiment.
List<ExperimentForm> tempexplist = experimentlist.stream()
.map(s -> { ExperimentForm p = new ExperimentForm(); p.setExperimentid(s); return p; })
.collect(Collectors.toList());
Encoder<ExperimentForm> ExpEncoder = Encoders.bean(ExperimentForm.class);
Dataset<ExperimentForm> dfexplistoriginal = sp.createDataset(tempexplist, Encoders.bean(ExperimentForm.class));
//Below prints DATASET: PartNum 4
System.out.println("DATASET: PartNum "+dfexplistoriginal.rdd().getNumPartitions());
JavaRDD<ExperimentForm> predf = CassandraJavaUtil.javaFunctions(dfexplistoriginal.javaRDD()).repartitionByCassandraReplica("mdb","experiment",experimentlist.size(),CassandraJavaUtil.someColumns("experimentid"),CassandraJavaUtil.mapToRow(ExperimentForm.class));
//Below prints RDD: PartNum 64
System.out.println("RDD: PartNum "+predf.getNumPartitions());
Dataset<ExperimentForm> newdfexplist = sp.createDataset(predf.rdd(), ExpEncoder);
Dataset<Row> readydfexplist = newdfexplist.as(Encoders.STRING()).toDF("experimentid");
//Below prints DATASET: PartNum 64
System.out.println("DATASET: PartNum "+readydfexplist.rdd().getNumPartitions());
//and finally the DirectJoin which for some reason is not mentioned as DirectJoin in DAGs like other times
Dataset<Row> metlistinitial = sp.read().format("org.apache.spark.sql.cassandra")
.options(new HashMap<String, String>() {
{
put("keyspace", "mdb");
put("table", "experiment");
}
})
.load().select(col("experimentid"), col("description"), col("intensity")).join(readydfexplist,"experimentid");
Is the code wrong? Below are also some images from SparkUI the Stages Tab with DAGs. At first I have 4 tasks/partitions and after repartitionByCassandraReplica I get 64 or more. Why?
All the Stages:
Stage 0 DAG
Stage 0 Metrics
Stage 1 DAG
Stage 1 Some Metrics
Looks like the code I wrote above is not entirely correct! I managed to get repartitionByCassandraReplica working by just converting dataset to RDD, performing the repartitionByCassandraReplica doing the join with JoinWithCassandraTable and THEN converting back to dataset! Now it is indeed repartitioned on the nodes that actually have the data! Partitions are maintained between these conversions!

Spark converting dataframe to RDD takes a huge amount of time, lazy execution or real issue?

In my spark application, I am loading data from Solr into a dataframe, running an SQL query on it, and then writing the resulting dataframe to MongoDB.
I am using spark-solr library to read data from Solr and mongo-spark-connector to write results to MongoDB.
The problem is that it is very slow, for datasets as small as 90 rows in an RDD, the spark job takes around 6 minutes to complete (4 nodes, 96gb RAM, 32 cores each).
I am sure that reading from Solr and writing to MongoDB is not slow because outside Spark they perform very fast.
When I inspect running jobs/stages/tasks on application master UI, it always shows a specific line in this function as taking 99% of the time:
override def exportData(spark: SparkSession, result: DataFrame): Unit = {
try {
val mongoWriteConfig = configureWriteConfig
MongoSpark.save(result.withColumn("resultOrder", monotonically_increasing_id())
.rdd
.map(row => {
implicit val formats: DefaultFormats.type = org.json4s.DefaultFormats
val rMap = Map(row.getValuesMap(row.schema.fieldNames.filterNot(_.equals("resultOrder"))).toSeq: _*)
val m = Map[String, Any](
"queryId" -> queryId,
"queryIndex" -> opIndex,
"resultOrder" -> row.getAs[Long]("resultOrder"),
"result" -> rMap
)
Document.parse(Serialization.write(m))
}), mongoWriteConfig);
} catch {
case e: SparkException => handleMongoException(e)
}
}
The line .rdd is shown to take most of the time to execute. Other stages take a few seconds or less.
I know that converting a dataframe to an rdd is not an inexpensive call but for 90 rows it should not take this long. My local standalone spark instance can do it in a few seconds.
I understand that Spark executes transformations lazily. Does it mean that operations before .rdd call is taking a long time and it's just a display issue on application master UI? Or is it really the dataframe to rdd conversion taking too long? What can cause this?
By the way, SQL queries run on the dataframe are pretty simple ones, just a single group by etc.

What is the best strategy to load huge datasets/data into Hive tables using Spark? [duplicate]

I am trying to move data from a table in PostgreSQL table to a Hive table on HDFS. To do that, I came up with the following code:
val conf = new SparkConf().setAppName("Spark-JDBC").set("spark.executor.heartbeatInterval","120s").set("spark.network.timeout","12000s").set("spark.sql.inMemoryColumnarStorage.compressed", "true").set("spark.sql.orc.filterPushdown","true").set("spark.serializer", "org.apache.spark.serializer.KryoSerializer").set("spark.kryoserializer.buffer.max","512m").set("spark.serializer", classOf[org.apache.spark.serializer.KryoSerializer].getName).set("spark.streaming.stopGracefullyOnShutdown","true").set("spark.yarn.driver.memoryOverhead","7168").set("spark.yarn.executor.memoryOverhead","7168").set("spark.sql.shuffle.partitions", "61").set("spark.default.parallelism", "60").set("spark.memory.storageFraction","0.5").set("spark.memory.fraction","0.6").set("spark.memory.offHeap.enabled","true").set("spark.memory.offHeap.size","16g").set("spark.dynamicAllocation.enabled", "false").set("spark.dynamicAllocation.enabled","true").set("spark.shuffle.service.enabled","true")
val spark = SparkSession.builder().config(conf).master("yarn").enableHiveSupport().config("hive.exec.dynamic.partition", "true").config("hive.exec.dynamic.partition.mode", "nonstrict").getOrCreate()
def prepareFinalDF(splitColumns:List[String], textList: ListBuffer[String], allColumns:String, dataMapper:Map[String, String], partition_columns:Array[String], spark:SparkSession): DataFrame = {
val colList = allColumns.split(",").toList
val (partCols, npartCols) = colList.partition(p => partition_columns.contains(p.takeWhile(x => x != ' ')))
val queryCols = npartCols.mkString(",") + ", 0 as " + flagCol + "," + partCols.reverse.mkString(",")
val execQuery = s"select ${allColumns}, 0 as ${flagCol} from schema.tablename where period_year='2017' and period_num='12'"
val yearDF = spark.read.format("jdbc").option("url", connectionUrl).option("dbtable", s"(${execQuery}) as year2017")
.option("user", devUserName).option("password", devPassword)
.option("partitionColumn","cast_id")
.option("lowerBound", 1).option("upperBound", 100000)
.option("numPartitions",70).load()
val totalCols:List[String] = splitColumns ++ textList
val cdt = new ChangeDataTypes(totalCols, dataMapper)
hiveDataTypes = cdt.gpDetails()
val fc = prepareHiveTableSchema(hiveDataTypes, partition_columns)
val allColsOrdered = yearDF.columns.diff(partition_columns) ++ partition_columns
val allCols = allColsOrdered.map(colname => org.apache.spark.sql.functions.col(colname))
val resultDF = yearDF.select(allCols:_*)
val stringColumns = resultDF.schema.fields.filter(x => x.dataType == StringType).map(s => s.name)
val finalDF = stringColumns.foldLeft(resultDF) {
(tempDF, colName) => tempDF.withColumn(colName, regexp_replace(regexp_replace(col(colName), "[\r\n]+", " "), "[\t]+"," "))
}
finalDF
}
val dataDF = prepareFinalDF(splitColumns, textList, allColumns, dataMapper, partition_columns, spark)
val dataDFPart = dataDF.repartition(30)
dataDFPart.createOrReplaceTempView("preparedDF")
spark.sql("set hive.exec.dynamic.partition.mode=nonstrict")
spark.sql("set hive.exec.dynamic.partition=true")
spark.sql(s"INSERT OVERWRITE TABLE schema.hivetable PARTITION(${prtn_String_columns}) select * from preparedDF")
The data is inserted into the hive table dynamically partitioned based on prtn_String_columns: source_system_name, period_year, period_num
Spark-submit used:
SPARK_MAJOR_VERSION=2 spark-submit --conf spark.ui.port=4090 --driver-class-path /home/fdlhdpetl/jars/postgresql-42.1.4.jar --jars /home/fdlhdpetl/jars/postgresql-42.1.4.jar --num-executors 80 --executor-cores 5 --executor-memory 50G --driver-memory 20G --driver-cores 3 --class com.partition.source.YearPartition splinter_2.11-0.1.jar --master=yarn --deploy-mode=cluster --keytab /home/fdlhdpetl/fdlhdpetl.keytab --principal fdlhdpetl#FDLDEV.COM --files /usr/hdp/current/spark2-client/conf/hive-site.xml,testconnection.properties --name Splinter --conf spark.executor.extraClassPath=/home/fdlhdpetl/jars/postgresql-42.1.4.jar
The following error messages are generated in the executor logs:
Container exited with a non-zero exit code 143.
Killed by external signal
18/10/03 15:37:24 ERROR SparkUncaughtExceptionHandler: Uncaught exception in thread Thread[SIGTERM handler,9,system]
java.lang.OutOfMemoryError: Java heap space
at java.util.zip.InflaterInputStream.<init>(InflaterInputStream.java:88)
at java.util.zip.ZipFile$ZipFileInflaterInputStream.<init>(ZipFile.java:393)
at java.util.zip.ZipFile.getInputStream(ZipFile.java:374)
at java.util.jar.JarFile.getManifestFromReference(JarFile.java:199)
at java.util.jar.JarFile.getManifest(JarFile.java:180)
at sun.misc.URLClassPath$JarLoader$2.getManifest(URLClassPath.java:944)
at java.net.URLClassLoader.defineClass(URLClassLoader.java:450)
at java.net.URLClassLoader.access$100(URLClassLoader.java:73)
at java.net.URLClassLoader$1.run(URLClassLoader.java:368)
at java.net.URLClassLoader$1.run(URLClassLoader.java:362)
at java.security.AccessController.doPrivileged(Native Method)
at java.net.URLClassLoader.findClass(URLClassLoader.java:361)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at sun.misc.Launcher$AppClassLoader.loadClass(Launcher.java:331)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at org.apache.spark.util.SignalUtils$ActionHandler.handle(SignalUtils.scala:99)
at sun.misc.Signal$1.run(Signal.java:212)
at java.lang.Thread.run(Thread.java:745)
I see in the logs that the read is being executed properly with the given number of partitions as below:
Scan JDBCRelation((select column_names from schema.tablename where period_year='2017' and period_num='12') as year2017) [numPartitions=50]
Below is the state of executors in stages:
The data is not being partitioned properly. One partition is smaller while the other one becomes huge. There is a skew problem here.
While inserting the data into Hive table the job fails at the line:spark.sql(s"INSERT OVERWRITE TABLE schema.hivetable PARTITION(${prtn_String_columns}) select * from preparedDF") but I understand this is happening because of the data skew problem.
I tried to increase number of executors, increasing the executor memory, driver memory, tried to just save as csv file instead of saving the dataframe into a Hive table but nothing affects the execution from giving the exception:
java.lang.OutOfMemoryError: GC overhead limit exceeded
Is there anything in the code that I need to correct ? Could anyone let me know how can I fix this problem ?
Determine how many partitions you need given the amount of input data and your cluster resources. As a rule of thumb it is better to keep partition input under 1GB unless strictly necessary. and strictly smaller than the block size limit.
You've previously stated that you migrate 1TB of data values you use in different posts (5 - 70) are likely way to low to ensure smooth process.
Try to use value which won't require further repartitioning.
Know your data.
Analyze the columns available in the the dataset to determine if there any columns with high cardinality and uniform distribution to be distributed among desired number of partitions. These are good candidates for an import process. Additionally you should determine an exact range of values.
Aggregations with different centrality and skewness measure as well as histograms and basic counts-by-key are good exploration tools. For this part it is better to analyze data directly in the database, instead of fetching it to Spark.
Depending on the RDBMS you might be able to use width_bucket (PostgreSQL, Oracle) or equivalent function to get a decent idea how data will be distributed in Spark after loading with partitionColumn, lowerBound, upperBound, numPartitons.
s"""(SELECT width_bucket($partitionColum, $lowerBound, $upperBound, $numPartitons) AS bucket, COUNT(*)
FROM t
GROUP BY bucket) as tmp)"""
If there are no columns which satisfy above criteria consider:
Creating a custom one and exposing it via. a view. Hashes over multiple independent columns are usually good candidates. Please consult your database manual to determine functions that can be used here (DBMS_CRYPTO in Oracle, pgcrypto in PostgreSQL)*.
Using a set of independent columns which taken together provide high enough cardinality.
Optionally, if you're going to write to a partitioned Hive table, you should consider including Hive partitioning columns. It might limit the number of files generated later.
Prepare partitioning arguments
If column selected or created in the previous steps is numeric (or date / timestamp in Spark >= 2.4) provide it directly as the partitionColumn and use range values determined before to fill lowerBound and upperBound.
If bound values don't reflect the properties of data (min(col) for lowerBound, max(col) for upperBound) it can result in a significant data skew so thread carefully. In the worst case scenario, when bounds don't cover the range of data, all records will be fetched by a single machine, making it no better than no partitioning at all.
If column selected in the previous steps is categorical or is a set of columns generate a list of mutually exclusive predicates that fully cover the data, in a form that can be used in a SQL where clause.
For example if you have a column A with values {a1, a2, a3} and column B with values {b1, b2, b3}:
val predicates = for {
a <- Seq("a1", "a2", "a3")
b <- Seq("b1", "b2", "b3")
} yield s"A = $a AND B = $b"
Double check that conditions don't overlap and all combinations are covered. If these conditions are not satisfied you end up with duplicates or missing records respectively.
Pass data as predicates argument to jdbc call. Note that the number of partitions will be equal exactly to the number of predicates.
Put database in a read-only mode (any ongoing writes can cause data inconsistency. If possible you should lock database before you start the whole process, but if might be not possible, in your organization).
If the number of partitions matches the desired output load data without repartition and dump directly to the sink, if not you can try to repartition following the same rules as in the step 1.
If you still experience any problems make sure that you've properly configured Spark memory and GC options.
If none of the above works:
Consider dumping your data to a network / distributes storage using tools like COPY TO and read it directly from there.
Note that or standard database utilities you will typically need a POSIX compliant file system, so HDFS usually won't do.
The advantage of this approach is that you don't need to worry about the column properties, and there is no need for putting data in a read-only mode, to ensure consistency.
Using dedicated bulk transfer tools, like Apache Sqoop, and reshaping data afterwards.
* Don't use pseudocolumns - Pseudocolumn in Spark JDBC.
In my experience there are 4 kinds of memory settings which make a difference:
A) [1] Memory for storing data for processing reasons VS [2] Heap Space for holding the program stack
B) [1] Driver VS [2] executor memory
Up to now, I was always able to get my Spark jobs running successfully by increasing the appropriate kind of memory:
A2-B1 would therefor be the memory available on the driver to hold the program stack. Etc.
The property names are as follows:
A1-B1) executor-memory
A1-B2) driver-memory
A2-B1) spark.yarn.executor.memoryOverhead
A2-B2) spark.yarn.driver.memoryOverhead
Keep in mind that the sum of all *-B1 must be less than the available memory on your workers and the sum of all *-B2 must be less than the memory on your driver node.
My bet would be, that the culprit is one of the boldly marked heap settings.
There was an another question of yours routed here as duplicate
'How to avoid data skewing while reading huge datasets or tables into spark?
The data is not being partitioned properly. One partition is smaller while the
other one becomes huge on read.
I observed that one of the partition has nearly 2million rows and
while inserting there is a skew in partition. '
if the problem is to deal with data that is partitioned in a dataframe after read, Have you played around increasing the "numPartitions" value ?
.option("numPartitions",50)
lowerBound, upperBound form partition strides for generated WHERE clause expressions and numpartitions determines the number of split.
say for example, sometable has column - ID (we choose that as partitionColumn) ; value range we see in table for column-ID is from 1 to 1000 and we want to get all the records by running select * from sometable,
so we going with lowerbound = 1 & upperbound = 1000 and numpartition = 4
this will produce a dataframe of 4 partition with result of each Query by building sql based on our feed (lowerbound = 1 & upperbound = 1000 and numpartition = 4)
select * from sometable where ID < 250
select * from sometable where ID >= 250 and ID < 500
select * from sometable where ID >= 500 and ID < 750
select * from sometable where ID >= 750
what if most of the records in our table fall within the range of ID(500,750). that's the situation you are in to.
when we increase numpartition , the split happens even further and that reduce the volume of records in the same partition but this
is not a fine shot.
Instead of spark splitting the partitioncolumn based on boundaries we provide, if you think of feeding the split by yourself so, data can be evenly
splitted. you need to switch over to another JDBC method where instead of (lowerbound,upperbound & numpartition) we can provide
predicates directly.
def jdbc(url: String, table: String, predicates: Array[String], connectionProperties: Properties): DataFrame
Link

spark: No of records in DataFrame is different in different runs

I am running a spark job that reads data from teradata. The query looks like
select * from db_name.table_name sample 5000000;
I'm trying to pull sample of 5 million rows of data. When I tried to print the number of rows in the result DataFrame, it is giving different results each time I run. Sometimes it is 4999937 and sometimes it is 5000124. Is there any particular reason for this kind of behaviour?
EDIT #1:
The code I'm using:
val query = "(select * from db_name.table_name sample 5000000) as data"
var teradataConfig = Map("url"->"jdbc:teradata://HOSTNAME/DATABASE=db_name,DBS_PORT=1025,MAYBENULL=ON",
"TMODE"->"TERA",
"user"->"username",
"password"->"password",
"driver"->"com.teradata.jdbc.TeraDriver",
"dbtable" -> query)
var df = spark.read.format("jdbc").options(teradataConfig).load()
df.count
Try caching the resultant dataframe and perform count action on the dataframe
df.cache()
println(s"Record count: ${df.count()}
From here on when you reuse the df to create new dataframe or any other transformation you don't get mismatched counts since it is already in cache.
Make sure you have given enough memory to hold the cached dataframe in memory.

How to effectively read millions of rows from Cassandra?

I have a hard task to read from a Cassandra table millions of rows. Actually this table contains like 40~50 millions of rows.
The data is actually internal URLs for our system and we need to fire all of them. To fire it, we are using Akka Streams and it have been working pretty good, doing some back pressure as needed. But we still have not found a way to read everything effectively.
What we have tried so far:
Reading the data as Stream using Akka Stream. We are using phantom-dsl that provides a publisher for a specific table. But it does not read everything, only a small portion. Actually it stops to read after the first 1 million.
Reading using Spark by a specific date. Our table is modeled like a time series table, with year, month, day, minutes... columns. Right now we are selecting by day, so Spark will not fetch a lot of things to be processed, but this is a pain to select all those days.
The code is the following:
val cassandraRdd =
sc
.cassandraTable("keyspace", "my_table")
.select("id", "url")
.where("year = ? and month = ? and day = ?", date.getYear, date.getMonthOfYear, date.getDayOfMonth)
Unfortunately I can't iterate over the partitions to get less data, I have to use a collect because it complains the actor is not serializable.
val httpPool: Flow[(HttpRequest, String), (Try[HttpResponse], String), HostConnectionPool] = Http().cachedHostConnectionPool[String](host, port).async
val source =
Source
.actorRef[CassandraRow](10000000, OverflowStrategy.fail)
.map(row => makeUrl(row.getString("id"), row.getString("url")))
.map(url => HttpRequest(uri = url) -> url)
val ref = Flow[(HttpRequest, String)]
.via(httpPool.withAttributes(ActorAttributes.supervisionStrategy(decider)))
.to(Sink.actorRef(httpHandlerActor, IsDone))
.runWith(source)
cassandraRdd.collect().foreach { row =>
ref ! row
}
I would like to know if any of you have such experience on reading millions of rows for doing anything different from aggregation and so on.
Also I have thought to read everything and send to a Kafka topic, where I would be receiving using Streaming(spark or Akka), but the problem would be the same, how to load all those data effectively ?
EDIT
For now, I'm running on a cluster with a reasonable amount of memory 100GB and doing a collect and iterating over it.
Also, this is far different from getting bigdata with spark and analyze it using things like reduceByKey, aggregateByKey, etc, etc.
I need to fetch and send everything over HTTP =/
So far it is working the way I did, but I'm afraid this data get bigger and bigger to a point where fetching everything into memory makes no sense.
Streaming this data would be the best solution, fetching in chunks, but I haven't found a good approach yet for this.
At the end, I'm thinking of to use Spark to get all those data, generate a CSV file and use Akka Stream IO to process, this way I would evict to keep a lot of things in memory since it takes hours to process every million.
Well, after spending sometime reading, talking with other guys and doing tests the result could be achieve by the following code sample:
val sc = new SparkContext(sparkConf)
val cassandraRdd = sc.cassandraTable(config.getString("myKeyspace"), "myTable")
.select("key", "value")
.as((key: String, value: String) => (key, value))
.partitionBy(new HashPartitioner(2 * sc.defaultParallelism))
.cache()
cassandraRdd
.groupByKey()
.foreachPartition { partition =>
partition.foreach { row =>
implicit val system = ActorSystem()
implicit val materializer = ActorMaterializer()
val myActor = system.actorOf(Props(new MyActor(system)), name = "my-actor")
val source = Source.fromIterator { () => row._2.toIterator }
source
.map { str =>
myActor ! Count
str
}
.to(Sink.actorRef(myActor, Finish))
.run()
}
}
sc.stop()
class MyActor(system: ActorSystem) extends Actor {
var count = 0
def receive = {
case Count =>
count = count + 1
case Finish =>
println(s"total: $count")
system.shutdown()
}
}
case object Count
case object Finish
What I'm doing is the following:
Try to achieve a good number of Partitions and a Partitioner using the partitionBy and groupBy methods
Use Cache to prevent Data Shuffle, making your Spark move large data across nodes, using high IO etc.
Create the whole actor system with it's dependencies as well as the Stream inside the foreachPartition method. Here is a trade off, you can have only one ActorSystem but you will have to make a bad use of .collect as I wrote in the question. However creating everything inside, you still have the ability to run things inside spark distributed across your cluster.
Finish each actor system at the end of the iterator using the Sink.actorRef with a message to kill(Finish)
Perhaps this code could be even more improved, but so far I'm happy to do not make the use of .collect anymore and working only inside Spark.

Resources