Classful Thread Pool - multithreading

I need to design a thread pool system, in Python in this case, but I'm more interested in the general methodology.
It has to be something along the lines of https://www.metachris.com/2016/04/python-threadpool/, where threads wait idling until some jobs are pushed into the pool. How that works, using condition variables, is clear to me.
I have one additional requirement though: the jobs I'm pushing into the pool cannot run all in parallel. Each of them has a class (i don't mean the object class here, just a simple integer that somehow classifies the job) and only one job per class can be running at the same time. If a job is pushed having the same class of a job that is currently running, it has to wait in the queue until the latter is done.
I have already modified the mentioned class to do this, but what I achieved is pretty messy and I'm not sure it's reliable, so I would ask what modifications would be suggested or whether I should use a totally different approach. Again: I don't need the code, but rather a description.
Thanks.

Related

Best way to implement background “timer” functionality in Python/Django

I am trying to implement a Django web application (on Python 3.8.5) which allows a user to create “activities” where they define an activity duration and then set the activity status to “In progress”.
The POST action to the View writes the new status, the duration and the start time (end time, based on start time and duration is also possible to add here of course).
The back-end should then keep track of the duration and automatically change the status to “Finished”.
User actions can also change the status to “Finished” before the calculated end time (i.e. the timer no longer needs to be tracked).
I am fairly new to Python so I need some advice on the smartest way to implement such a concept?
It needs to be efficient and scalable – I’m currently using a Heroku Free account so have limited system resources, but efficiency would also be important for future production implementations of course.
I have looked at the Python threading Timer, and this seems to work on a basic level, but I’ve not been able to determine what kind of constraints this places on the system – e.g. whether the spawned Timer thread might prevent the main thread from finishing and releasing resources (i.e. Heroku Dyno threads), etc.
I have read that persistence might be a problem (if the server goes down), and I haven’t found a way to cancel the timer from another process (the .cancel() method seems to rely on having the original object to cancel, and I’m not sure if this is achievable from another process).
I was also wondering about a more “background” approach, i.e. a single process which is constantly checking the database looking for activity records which have reached their end time and swapping the status.
But what would be the best way of implementing such a server?
Is it practical to read the database every second to find records with an end time of “now”? I need the status to change in real-time when the end time is reached.
Is something like Celery a good option, or is it overkill for a single process like this?
As I said I’m fairly new to these technologies, so I may be missing other obvious solutions – please feel free to enlighten me!
Thanks in advance.
To achieve this you need some kind of scheduling tasks functionality. For a fast simpler implementation is a good solution to use the Timer object from the
Threading module.
A more complete solution is tu use Celery. If you are new, deeping in it will give you a good value start using celery as a queue manager distributing your work easily across several threads or process.
You mentioned that you want it to be efficient and scalable, so I guess you will want to implement similar functionalities that will require multiprocessing and schedule so for that reason my recommendation is to use celery.
You can integrate it into your Django application easily following the documentation Integrate Django with Celery.

Airflow - Locking between tasks so that only one parallel task runs at a time?

I have one DAG that has three task streams (licappts, agents, agentpolicy):
For simplicity I'm calling these three distinct streams. The streams are independent in the sense that just because agentpolicy failed doesn't mean the other two (liceappts and agents) should be affected by the other streams failure.
But for the sourceType_emr_task_1 tasks (i.e., licappts_emr_task_1, agents_emr_task_1, and agentpolicy_emr_task_1) I can only run one of these tasks at a time. For example I can't run agents_emr_task_1 and agentpolicy_emr_task_1 at the same time even though they are two independent tasks that don't necessarily care about each other.
How can I achieve this functionality in Airflow? For now the only thing I can think of is to wrap that task in a script that somehow locks a global variable, then if the variable is locked I'll have the script do a Thread.sleep(60 seconds) or something, and then retry. But that seems very hacky and I'm curious if Airflow offers a solution for this.
I'm open to restructuring the ordering of my DAG if needed to achieve this. One thing I thought about doing was to make a hard coded ordering of
Dag Starts -> ... -> licappts_emr_task_1 -> agents_emr_task_1 -> agentpolicy_emr_task_1 -> DAG Finished
But I don't think combining the streams this way because then for example agentpolicy_emr_task_1 has to wait for the other two to finish before it can start and there could be times when agentpolicy_emr_task_1 is ready to go before the other two have finished their other tasks.
So ideally I want whatever sourceType_emr_task_1 task to start that's ready first and then block the other tasks from running their sourceType_emr_task_1 task until it's finished.
Update:
Another solution I just thought of is if there is a way for me to check on the status of another task I could create a script for sourceType_emr_task_1 that checks to see if any of the other two sourceType_emr_task_1 tasks have a status of running, and if they do it'll sleep and periodically check to see if none of the other's are running, in which case it'll start it's process. I'm not a big fan of this way though because I feel like it could cause a race condition where both read (at the same time) that none are running and both start running.
You could use a pool to ensure the parallelism for those tasks is 1.
For each of the *_emr_task_1 tasks, set a pool kwarg to to be something like pool=emr_task.
Then just go into the webserver -> admin -> pools -> create:
Set the name Pool to match the pool used in your operator, and the Slots to be 1.
This will ensure the scheduler will only allow tasks to be queued for that pool up to the number of slots configured, regardless of the parallelism of the rest of Airflow.

Designing concurrency in a Python program

I'm designing a large-scale project, and I think I see a way I could drastically improve performance by taking advantage of multiple cores. However, I have zero experience with multiprocessing, and I'm a little concerned that my ideas might not be good ones.
Idea
The program is a video game that procedurally generates massive amounts of content. Since there's far too much to generate all at once, the program instead tries to generate what it needs as or slightly before it needs it, and expends a large amount of effort trying to predict what it will need in the near future and how near that future is. The entire program, therefore, is built around a task scheduler, which gets passed function objects with bits of metadata attached to help determine what order they should be processed in and calls them in that order.
Motivation
It seems to be like it ought to be easy to make these functions execute concurrently in their own processes. But looking at the documentation for the multiprocessing modules makes me reconsider- there doesn't seem to be any simple way to share large data structures between threads. I can't help but imagine this is intentional.
Questions
So I suppose the fundamental questions I need to know the answers to are thus:
Is there any practical way to allow multiple threads to access the same list/dict/etc... for both reading and writing at the same time? Can I just launch multiple instances of my star generator, give it access to the dict that holds all the stars, and have new objects appear to just pop into existence in the dict from the perspective of other threads (that is, I wouldn't have to explicitly grab the star from the process that made it; I'd just pull it out of the dict as if the main thread had put it there itself).
If not, is there any practical way to allow multiple threads to read the same data structure at the same time, but feed their resultant data back to a main thread to be rolled into that same data structure safely?
Would this design work even if I ensured that no two concurrent functions tried to access the same data structure at the same time, either for reading or for writing?
Can data structures be inherently shared between processes at all, or do I always explicitly have to send data from one process to another as I would with processes communicating over a TCP stream? I know there are objects that abstract away that sort of thing, but I'm asking if it can be done away with entirely; have the object each thread is looking at actually be the same block of memory.
How flexible are the objects that the modules provide to abstract away the communication between processes? Can I use them as a drop-in replacement for data structures used in existing code and not notice any differences? If I do such a thing, would it cause an unmanageable amount of overhead?
Sorry for my naivete, but I don't have a formal computer science education (at least, not yet) and I've never worked with concurrent systems before. Is the idea I'm trying to implement here even remotely practical, or would any solution that allows me to transparently execute arbitrary functions concurrently cause so much overhead that I'd be better off doing everything in one thread?
Example
For maximum clarity, here's an example of how I imagine the system would work:
The UI module has been instructed by the player to move the view over to a certain area of space. It informs the content management module of this, and asks it to make sure that all of the stars the player can currently click on are fully generated and ready to be clicked on.
The content management module checks and sees that a couple of the stars the UI is saying the player could potentially try to interact with have not, in fact, had the details that would show upon click generated yet. It produces a number of Task objects containing the methods of those stars that, when called, will generate the necessary data. It also adds some metadata to these task objects, assuming (possibly based on further information collected from the UI module) that it will be 0.1 seconds before the player tries to click anything, and that stars whose icons are closest to the cursor have the greatest chance of being clicked on and should therefore be requested for a time slightly sooner than the stars further from the cursor. It then adds these objects to the scheduler queue.
The scheduler quickly sorts its queue by how soon each task needs to be done, then pops the first task object off the queue, makes a new process from the function it contains, and then thinks no more about that process, instead just popping another task off the queue and stuffing it into a process too, then the next one, then the next one...
Meanwhile, the new process executes, stores the data it generates on the star object it is a method of, and terminates when it gets to the return statement.
The UI then registers that the player has indeed clicked on a star now, and looks up the data it needs to display on the star object whose representative sprite has been clicked. If the data is there, it displays it; if it isn't, the UI displays a message asking the player to wait and continues repeatedly trying to access the necessary attributes of the star object until it succeeds.
Even though your problem seems very complicated, there is a very easy solution. You can hide away all the complicated stuff of sharing you objects across processes using a proxy.
The basic idea is that you create some manager that manages all your objects that should be shared across processes. This manager then creates its own process where it waits that some other process instructs it to change the object. But enough said. It looks like this:
import multiprocessing as m
manager = m.Manager()
starsdict = manager.dict()
process = Process(target=yourfunction, args=(starsdict,))
process.run()
The object stored in starsdict is not the real dict. instead it sends all changes and requests, you do with it, to its manager. This is called a "proxy", it has almost exactly the same API as the object it mimics. These proxies are pickleable, so you can pass as arguments to functions in new processes (like shown above) or send them through queues.
You can read more about this in the documentation.
I don't know how proxies react if two processes are accessing them simultaneously. Since they're made for parallelism I guess they should be safe, even though I heard they're not. It would be best if you test this yourself or look for it in the documentation.

Independent server side processing in node

Is it possible, or even practical to create a node program (or sub program/loop) that executes independently of the connected clients.
So in my specific use case, I would like to make a mulitplayer game, where each turn a player preforms actions. And at the end of that turn those actions are computed. Is it possible to perform those computations at a specific time regardless of the client/players connecting?
I assume this involves the use of threads somewhere.
Possibly an easier solution would be to compute the outcome when it is observed, but this could cause difficulties if it has an influence in with other entities. But this problem has been a curiosity of mine for a while.
Well, basically, the easiest solution would probably to run the computation onto a cluster. This is spawning a thread who's running independent task and communicating with messages with the main thread.
If you wish however to run a completely separate process (I probably wouldn't, but it is an option), this can happen too. You then just need a communication protocol between the two process. Usually this would be handled by a messaging or a task queue system. A popular queue solving this issue is RabbitMQ.
If the computations each turn is not to heavy you could solve the issue with a simple setTimeout()
function turnCalculations(){
//do loads of stuff every 30 seconds
}
setTimout(turnCalculations,30000)
//normal node server stuff here
This would do the turn calculations every 30 seconds regardless of users connected, but if the calculations take to long they might block your server.

Using threadsafe initialization in a JRuby gem

Wanting to be sure we're using the correct synchronization (and no more than necessary) when writing threadsafe code in JRuby; specifically, in a Puma instantiated Rails app.
UPDATE: Extensively re-edited this question, to be very clear and use latest code we are implementing. This code uses the atomic gem written by #headius (Charles Nutter) for JRuby, but not sure it is totally necessary, or in which ways it's necessary, for what we're trying to do here.
Here's what we've got, is this overkill (meaning, are we over/uber-engineering this), or perhaps incorrect?
ourgem.rb:
require 'atomic' # gem from #headius
SUPPORTED_SERVICES = %w(serviceABC anotherSvc andSoOnSvc).freeze
module Foo
def self.included(cls)
cls.extend(ClassMethods)
cls.send :__setup
end
module ClassMethods
def get(service_name, method_name, *args)
__cached_client(service_name).send(method_name.to_sym, *args)
# we also capture exceptions here, but leaving those out for brevity
end
private
def __client(service_name)
# obtain and return a client handle for the given service_name
# we definitely want to cache the value returned from this method
# **AND**
# it is a requirement that this method ONLY be called *once PER service_name*.
end
def __cached_client(service_name)
##_clients.value[service_name]
end
def __setup
##_clients = Atomic.new({})
##_clients.update do |current_service|
SUPPORTED_SERVICES.inject(Atomic.new({}).value) do |memo, service_name|
if current_services[service_name]
current_services[service_name]
else
memo.merge({service_name => __client(service_name)})
end
end
end
end
end
end
client.rb:
require 'ourgem'
class GetStuffFromServiceABC
include Foo
def self.get_some_stuff
result = get('serviceABC', 'method_bar', 'arg1', 'arg2', 'arg3')
puts result
end
end
Summary of the above: we have ##_clients (a mutable class variable holding a Hash of clients) which we only want to populate ONCE for all available services, which are keyed on service_name.
Since the hash is in a class variable (and hence threadsafe?), are we guaranteed that the call to __client will not get run more than once per service name (even if Puma is instantiating multiple threads with this class to service all the requests from different users)? If the class variable is threadsafe (in that way), then perhaps the Atomic.new({}) is unnecessary?
Also, should we be using an Atomic.new(ThreadSafe::Hash) instead? Or again, is that not necessary?
If not (meaning: you think we do need the Atomic.news at least, and perhaps also the ThreadSafe::Hash), then why couldn't a second (or third, etc.) thread interrupt between the Atomic.new(nil) and the ##_clients.update do ... meaning the Atomic.news from EACH thread will EACH create two (separate) objects?
Thanks for any thread-safety advice, we don't see any questions on SO that directly address this issue.
Just a friendly piece of advice, before I attempt to tackle the issues you raise here:
This question, and the accompanying code, strongly suggests that you don't (yet) have a solid grasp of the issues involved in writing multi-threaded code. I encourage you to think twice before deciding to write a multi-threaded app for production use. Why do you actually want to use Puma? Is it for performance? Will your app handle many long-running, I/O-bound requests (like uploading/downloading large files) at the same time? Or (like many apps) will it primarily handle short, CPU-bound requests?
If the answer is "short/CPU-bound", then you have little to gain from using Puma. Multiple single-threaded server processes would be better. Memory consumption will be higher, but you will keep your sanity. Writing correct multi-threaded code is devilishly hard, and even experts make mistakes. If your business success, job security, etc. depends on that multi-threaded code working and working right, you are going to cause yourself a lot of unnecessary pain and mental anguish.
That aside, let me try to unravel some of the issues raised in your question. There is so much to say that it's hard to know where to start. You may want to pour yourself a cold or hot beverage of your choice before sitting down to read this treatise:
When you talk about writing "thread-safe" code, you need to be clear about what you mean. In most cases, "thread-safe" code means code which doesn't concurrently modify mutable data in a way which could cause data corruption. (What a mouthful!) That could mean that the code doesn't allow concurrent modification of mutable data at all (using locks), or that it does allow concurrent modification, but makes sure that it doesn't corrupt data (probably using atomic operations and a touch of black magic).
Note that when your threads are only reading data, not modifying it, or when working with shared stateless objects, there is no question of "thread safety".
Another definition of "thread-safe", which probably applies better to your situation, has to do with operations which affect the outside world (basically I/O). You may want some operations to only happen once, or to happen in a specific order. If the code which performs those operations runs on multiple threads, they could happen more times than desired, or in a different order than desired, unless you do something to prevent that.
It appears that your __setup method is only called when ourgem.rb is first loaded. As far as I know, even if multiple threads require the same file at the same time, MRI will only ever let a single thread load the file. I don't know whether JRuby is the same. But in any case, if your source files are being loaded more than once, that is symptomatic of a deeper problem. They should only be loaded once, on a single thread. If your app handles requests on multiple threads, those threads should be started up after the application has loaded, not before. This is the only sane way to do things.
Assuming that everything is sane, ourgem.rb will be loaded using a single thread. That means __setup will only ever be called by a single thread. In that case, there is no question of thread safety at all to worry about (as far as initialization of your "client cache" goes).
Even if __setup was to be called concurrently by multiple threads, your atomic code won't do what you think it does. First of all, you use Atomic.new({}).value. This wraps a Hash in an atomic reference, then unwraps it so you just get back the Hash. It's a no-op. You could just write {} instead.
Second, your Atomic#update call will not prevent the initialization code from running more than once. To understand this, you need to know what Atomic actually does.
Let me pull out the old, tired "increment a shared counter" example. Imagine the following code is running on 2 threads:
i += 1
We all know what can go wrong here. You may end up with the following sequence of events:
Thread A reads i and increments it.
Thread B reads i and increments it.
Thread A writes its incremented value back to i.
Thread B writes its incremented value back to i.
So we lose an update, right? But what if we store the counter value in an atomic reference, and use Atomic#update? Then it would be like this:
Thread A reads i and increments it.
Thread B reads i and increments it.
Thread A tries to write its incremented value back to i, and succeeds.
Thread B tries to write its incremented value back to i, and fails, because the value has already changed.
Thread B reads i again and increments it.
Thread B tries to write its incremented value back to i again, and succeeds this time.
Do you get the idea? Atomic never stops 2 threads from running the same code at the same time. What it does do, is force some threads to retry the #update block when necessary, to avoid lost updates.
If your goal is to ensure that your initialization code will only ever run once, using Atomic is a very inappropriate choice. If anything, it could make it run more times, rather than less (due to retries).
So, that is that. But if you're still with me here, I am actually more concerned about whether your "client" objects are themselves thread-safe. Do they have any mutable state? Since you are caching them, it seems that initializing them must be slow. Be that as it may, if you use locks to make them thread-safe, you may not be gaining anything from caching and sharing them between threads. Your "multi-threaded" server may be reduced to what is effectively an unnecessarily complicated, single-threaded server.
If the client objects have no mutable state, good for you. You can be "free and easy" and share them between threads with no problems. If they do have mutable state, but initializing them is slow, then I would recommend caching one object per thread, so they are never shared. Thread[] is your friend there.

Resources