I'm new to spark and working with it. Previously I worked with python and pandas, pandas has a map function which is often used to apply transformation on columns. I found out that spark also have map function as well but until now I haven't used it at all except for extracting values like this df.select("id").map(r => r.getString(0)).collect.toList
import spark.implicits._
val df3 = df2.map(row=>{
val util = new Util()
val fullName = row.getString(0) +row.getString(1) +row.getString(2)
(fullName, row.getString(3),row.getInt(5))
})
val df3Map = df3.toDF("fullName","id","salary")
my questions are,
is it common to use map function to transform dataframe columns?
is it common to use map like block of code above? source from sparkbyexamples
when do people usually use map?
I have one API which perform delete operation on dataframe like below
def deleteColmns(df:DataFrame,clmList :List[org.apache.spark.sql.Column]):DataFrame{
var ddf:DataFrame = null
for(clm<-clmList){
ddf.drop(clm)
}
return ddf
}
Since it is not good practice to use the var in functional programming , how to avoid this situation
With Spark >2.0, you can drop multiple columns using a sequence of column name :
val clmList: Seq[Column] = _
val strList: Seq[String] = clmList.map(c => s"$c")
df.drop(strList: _*)
Otherwise, you can always use foldLeft to fold left on the DataFrame and drop your columns :
clmList.foldLeft(df)((acc, c) => acc.drop(c))
I hope this helps.
I have a UDF that filters and selects values from a dataframe, but it runs into "object not serializable" error. Details below.
Suppose I have a dataframe df1 that has columns with names ("ID", "Y1", "Y2", "Y3", "Y4", "Y5", "Y6", "Y7", "Y8", "Y9", "Y10"). I want sum a subset of the "Y" columns based on the matching "ID" and "Value" from another dataframe df2. I tried the following:
val y_list = ("Y1", "Y2", "Y3", "Y4", "Y5", "Y6", "Y7", "Y8", "Y9", "Y10").map(c => col(c))
def udf_test(ID: String, value: Int): Double = {
df1.filter($"ID" === ID).select(y_list:_*).first.toSeq.toList.take(value).foldLeft(0.0)(_+_)
}
sqlContext.udf.register("udf_test", udf_test _)
val df_result = df2.withColumn("Result", callUDF("udf_test", $"ID", $"Value"))
This gives me errors of the form:
java.io.NotSerializableException: org.apache.spark.sql.Column
Serialization stack:
- object not serializable (class: org.apache.spark.sql.Column, value: Y1)
I looked this up and realized that Spark Column is not serializable. I am wondering:
1) There is any way to manipulate a dataframe within an UDF?
2) If not, what's the best way to achieve the type of operation above? My real case is more complicated than this. It requires me to select values from multiple small dataframes based on some columns in a big dataframe, and compute back a value to the big dataframe.
I am using Spark 1.6.3. Thanks!
You can't use Dataset operations inside UDFs. UDF can only manupulate on existing columns and produce one result column. It can't filter Dataset or make aggregations, but it can be used inside filter. UDAF also can aggregate values.
Instead, you can use .as[SomeCaseClass] to make Dataset from DataFrame and use normal, strongly typed functions inside filter, map, reduce.
Edit: If you want to join your bigDF with every small DF in smallDFs List, you can do:
import org.apache.spark.sql.functions._
val bigDF = // some processing
val smallDFs = Seq(someSmallDF1, someSmallDF2)
val joined = smallDFs.foldLeft(bigDF)((acc, df) => acc.join(broadcast(df), "join_column"))
broadcast is a function to add Broadcast Hint to small DF, so that small DF will use more efficient Broadcast Join instead of Sort Merge Join
1) No, you can only use plain scala code within UDFs
2) If you interpreted your code correctly, you can achieve your goal with:
df2
.join(
df1.select($"ID",y_list.foldLeft(lit(0))(_ + _).as("Result")),Seq("ID")
)
import org.apache.spark.sql.functions._
val events = Seq (
(1,1,2,3,4),
(2,1,2,3,4),
(3,1,2,3,4),
(4,1,2,3,4),
(5,1,2,3,4)).toDF("ID","amt1","amt2","amt3","amt4")
var prev_amt5=0
var i=1
def getamt5value(ID:Int,amt1:Int,amt2:Int,amt3:Int,amt4:Int) : Int = {
if(i==1){
i=i+1
prev_amt5=0
}else{
i=i+1
}
if (ID == 0)
{
if(amt1==0)
{
val cur_amt5= 1
prev_amt5=cur_amt5
cur_amt5
}else{
val cur_amt5=1*(amt2+amt3)
prev_amt5=cur_amt5
cur_amt5
}
}else if (amt4==0 || (prev_amt5==0 & amt1==0)){
val cur_amt5=0
prev_amt5=cur_amt5
cur_amt5
}else{
val cur_amt5=prev_amt5 + amt2 + amt3 + amt4
prev_amt5=cur_amt5
cur_amt5
}
}
val getamt5 = udf {(ID:Int,amt1:Int,amt2:Int,amt3:Int,amt4:Int) =>
getamt5value(ID,amt1,amt2,amt3,amt4)
}
myDF.withColumn("amnt5", getamt5(myDF.col("ID"),myDF.col("amt1"),myDF.col("amt2"),myDF.col("amt3"),myDF.col("amt4"))).show()
I am very new to Spark.
I have a very basic question. I have an array of values:
listofECtokens: Array[String] = Array(EC-17A5206955089011B, EC-17A5206955089011A)
I want to filter an RDD for all of these token values. I tried the following way:
val ECtokens = for (token <- listofECtokens) rddAll.filter(line => line.contains(token))
Output:
ECtokens: Unit = ()
I got an empty Unit even when there are records with these tokens. What am I doing wrong?
You can get that result in a more efficient way and the result would be a filtered RDD:
val filteredRDD = rddAll.filter(line => listofECtokens.exists(line.contains))
And then to get the result as an array you should call collect or take on the filteredRDD:
//collect brings the RDD to the driver so be carefull cause that can result in a OutOfMemory in that machine
val ECtokens = filteredRDD.collect()
//if you only need to print a few elements of the RDD, a safer approach is to use the take()
val ECtokens = filteredRDD.take(5)
I am using Spark 1.0.1 to process a large amount of data. Each row contains an ID number, some with duplicate IDs. I want to save all the rows with the same ID number in the same location, but I am having trouble doing it efficiently. I create an RDD[(String, String)] of (ID number, data row) pairs:
val mapRdd = rdd.map{ x=> (x.split("\\t+")(1), x)}
A way that works, but is not performant, is to collect the ID numbers, filter the RDD for each ID, and save the RDD of values with the same ID as a text file.
val ids = rdd.keys.distinct.collect
ids.foreach({ id =>
val dataRows = mapRdd.filter(_._1 == id).values
dataRows.saveAsTextFile(id)
})
I also tried a groupByKey or reduceByKey so that each tuple in the RDD contains a unique ID number as the key and a string of combined data rows separated by new lines for that ID number. I want to iterate through the RDD only once using foreach to save the data, but it can't give the values as an RDD
groupedRdd.foreach({ tup =>
val data = sc.parallelize(List(tup._2)) //nested RDD does not work
data.saveAsTextFile(tup._1)
})
Essentially, I want to split an RDD into multiple RDDs by an ID number and save the values for that ID number into their own location.
I think this problem is similar to
Write to multiple outputs by key Spark - one Spark job
Please refer the answer there.
import org.apache.hadoop.io.NullWritable
import org.apache.spark._
import org.apache.spark.SparkContext._
import org.apache.hadoop.mapred.lib.MultipleTextOutputFormat
class RDDMultipleTextOutputFormat extends MultipleTextOutputFormat[Any, Any] {
override def generateActualKey(key: Any, value: Any): Any =
NullWritable.get()
override def generateFileNameForKeyValue(key: Any, value: Any, name: String): String =
key.asInstanceOf[String]
}
object Split {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("Split" + args(1))
val sc = new SparkContext(conf)
sc.textFile("input/path")
.map(a => (k, v)) // Your own implementation
.partitionBy(new HashPartitioner(num))
.saveAsHadoopFile("output/path", classOf[String], classOf[String],
classOf[RDDMultipleTextOutputFormat])
spark.stop()
}
}
Just saw similar answer above, but actually we don't need customized partitions. The MultipleTextOutputFormat will create file for each key. It is ok that multiple record with same keys fall into the same partition.
new HashPartitioner(num), where the num is the partition number you want. In case you have a big number of different keys, you can set number to big. In this case, each partition will not open too many hdfs file handlers.
you can directly call saveAsTextFile on grouped RDD, here it will save the data based on partitions, i mean, if you have 4 distinctID's, and you specified the groupedRDD's number of partitions as 4, then spark stores each partition data into one file(so by which you can have only one fileper ID) u can even see the data as iterables of eachId in the filesystem.
This will save the data per user ID
val mapRdd = rdd.map{ x=> (x.split("\\t+")(1),
x)}.groupByKey(numPartitions).saveAsObjectFile("file")
If you need to retrieve the data again based on user id you can do something like
val userIdLookupTable = sc.objectFile("file").cache() //could use persist() if data is to big for memory
val data = userIdLookupTable.lookup(id) //note this returns a sequence, in this case you can just get the first one
Note that there is no particular reason to save to the file in this case I just did it since the OP asked for it, that being said saving to a file does allow you to load the RDD at anytime after the initial grouping has been done.
One last thing, lookup is faster than a filter approach of accessing ids but if you're willing to go off a pull request from spark you can checkout this answer for a faster approach