Load inconsistent data in pymongo - python-3.x

I am working with pymongo and am wanting to ensure that data saved can be loaded even if additional data elements have been added to the schema.
I have used this for classes that don't need to have the information processed before assigning it to class attributes:
class MyClass(object):
def __init__(self, instance_id):
#set default values
self.database_id = instance_id
self.myvar = 0
#load values from database
self.__load()
def __load(self):
data_dict = Collection.find_one({"_id":self.database_id})
for key, attribute in data_dict.items():
self.__setattr__(key,attribute)
However, in classes that I have to process the data from the database this doesn't work:
class Example(object):
def __init__(self, name):
self.name = name
self.database_id = None
self.member_dict = {}
self.load()
def load(self):
data_dict = Collection.find_one({"name":self.name})
self.database_id = data_dict["_id"]
for element in data_dict["element_list"]:
self.process_element(element)
for member_name, member_info in data_dict["member_class_dict"].items():
self.member_dict[member_name] = MemberClass(member_info)
def process_element(self, element):
print("Do Stuff")
Two example use cases I have are:
1) List of strings the are used to set flags, this is done by calling a function with the string as the argument. (def process_element above)
2) A dictionary of dictionaries which are used to create a list of instances of a class. (MemberClass(member_info) above)
I tried creating properties to handle this but found that __setattr__ doesn't look for properties.
I know I could redefine __setattr__ to look for specific names but it is my understanding that this would slow down all set interactions with the class and I would prefer to avoid that.
I also know I could use a bunch of try/excepts to catch the errors but this would end up making the code very bulky.
I don't mind the load function being slowed down a bit for this but very much want to avoid anything that will slow down the class outside of loading.

So the solution that I came up with is to use the idea of changing the __setattr__ method but instead to handle the exceptions in the load function instead of the __setattr__.
def load(self):
data_dict = Collection.find_one({"name":self.name})
for key, attribute in world_data.items():
if key == "_id":
self.database_id = attribute
elif key == "element_list":
for element in attribute:
self.process_element(element)
elif key == "member_class_dict":
for member_name, member_info in attribute.items():
self.member_dict[member_name] = MemberClass(member_info)
else:
self.__setattr__(key,attribute)
This provides all of the functionality of overriding the __setattr__ method without slowing down any future calls to __setattr__ outside of loading the class.

Related

Accessing variables from a method in class A and using it in Class B in python3.5

I have a BaseClass and two classes (Volume and testing) which inherits from the BaseClass. The class "Volume" use a method "driving_style" from another python module. I am trying to write another method "test_Score" which wants to access variables computed in the method "driving_style" which I want to use to compute further. These results will be accessed to the class "testing" as shown.
from training import Accuracy
import ComputeData
import model
class BaseClass(object):
def __init__(self, connections):
self.Type = 'Stock'
self.A = connections.A
self.log = self.B.log
def getIDs(self, assets):
ids = pandas.Series(assets.ids, index=assets.B)
return ids
class Volume(BaseClass):
def __init__(self, connections):
BaseClass.__init__(self, connections)
self.daystrade = 30
self.high_low = True
def learning(self, data, rootClass):
params.daystrade = self.daystrade
params.high_low = self.high_low
style = Accuracy.driving_style()
return self.Object(data.universe, style)
class testing(BaseClass):
def __init__(self, connections):
BaseClass.__init__(self, connections)
def learning(self, data, rootClass):
test_score = Accuracy.test_score()
return self.Object(data.universe, test_score)
def driving_style(date, modelDays, params):
daystrade = params.daystrade
high_low = params.high_low
DriveDays = model.DateRange(date, params.daystrade)
StopBy = ComputeData.instability(DriveDays)
if high_low:
style = ma.average(StopBy)
else:
style = ma.mean(StopBy)
return style
def test_score(date, modelDays, params):
"want to access the following from the method driving_style:"
DriveDays =
StopBy =
return test_score ("which i compute using values DriveDays and StopBy and use test_score in the method learning inside
the 'class - testing' which inherits some params from the BaseClass")
You can't use locals from a call to a function that was made elsewhere and has already returned.
A bad solution is to store them as globals that you can read from later (but that get replaced on every new call). A better solution might to return the relevant info to the caller along with the existing return values (return style, DriveDays, StopBy) and somehow get it to where it needs to go. If necessary, you could wrap the function into a class and store the computed values as attributes on an instance of the class, while keeping the return type the same.
But the best solution is probably to refactor, so the stuff you want is computed by dedicated methods that you can call directly from test_score and driving_style independently, without duplicating code or creating complicated state dependencies.
In short, basically any time you think you need to access locals from another function, you're almost certainly experiencing an XY problem.

Collection of objects that are set up only if actually used

I'm writing a class to manage a collection of objects that I'd like to "load" only if actually used (immagine that each object is an heavy document). Also I want to refer to each object both with a numeric key and a string name.
I decided to create a class that inherits from OrderedDict:
from collections import OrderedDict
class MyClass:
def load_me(self, key):
print(f"Object {key} loaded")
class MyClassColl(OrderedDict):
def __getitem__(self, key):
if isinstance(key, int):
key = list(self.keys())[key]
res = super().get(key).load_me(key)
return res
When I initialise the collection and retrieve a single object everything works well and:
my_coll = MyClassColl([('Obj1', MyClass()), ('Obj2', MyClass()), ('Obj3', MyClass())])
my_obj = my_coll['Obj2'] # or my_obj = my_coll[1]
prints:
Object Obj2 loaded
But using a loop, the objects are not properly loaded so:
for key, item in my_coll.items():
obj = item
has not output.
This is because the __getitem__ method is not getting called when you loop through the dictionary like that. It is only called when you use an index operator (as far as I know). So, a super easy fix would be to do your for loop like this:
for key in my_coll:
item = my_coll[key]
Alternatively you could try playing around with the __iter__ method but I think the way you've done it is probably ideal.

How to store in variable function returning value (kivy properties)

class Data(object):
def get_key_nicks(self):
'''
It returns key and nicks object
'''
file = open(self.key_address, 'rb')
key = pickle.load(file)
file.close()
file = open(self.nicks_address, 'rb')
nicks = pickle.load(file)
file.close()
return (key, nicks)
Above is the data api and function which i want to use in kivy
class MainScreen(FloatLayout):
data = ObjectProperty(Data())
key, nicks = ListProperty(data.get_key_nicks())
it gives error like: AttributeError: 'kivy.properties.ObjectProperty' object has no attribute 'get_key_nicks'
Properties are descriptors, which basically means they look like normal attributes when accessed from instances of the class, but at class level they are objects on their own. That's the nature of the problem here - at class level data is an ObjectProperty, even though if you access it from an instance of the class you'll get your Data() object that you passed in as the default value.
That said, I don't know what your code is actually trying to do, do you want key and nicks to be separate ListProperties?
Could you expand a bit more on what you're trying to do?
I think all you actually need to do is:
class MainScreen(FloatLayout):
data = ObjectProperty(Data())
def get_key_nicks(self):
return data.get_key_nicks()

Create instances from list of classes

How do I create instances of classes from a list of classes? I've looked at other SO answers but did understand them.
I have a list of classes:
list_of_classes = [Class1, Class2]
Now I want to create instances of those classes, where the variable name storing the class is the name of the class. I have tried:
for cls in list_of_classes:
str(cls) = cls()
but get the error: "SyntaxError: can't assign to function call". Which is of course obvious, but I don't know what to do else.
I really want to be able to access the class by name later on. Let's say we store all the instance in a dict and that one of the classes are called ClassA, then I would like to be able to access the instance by dict['ClassA'] later on. Is that possible? Is there a better way?
You say that you want "the variable name storing the class [to be] the name of the class", but that's a very bad idea. Variable names are not data. The names are for programmers to use, so there's seldom a good reason to generate them using code.
Instead, you should probably populate a list of instances, or if you are sure that you want to index by class name, use a dictionary mapping names to instances.
I suggest something like:
list_of_instances = [cls() for cls in list_of_classes]
Or this:
class_name_to_instance_mapping = {cls.__name__: cls() for cls in list_of_classes}
One of the rare cases where it can sometimes make sense to automatically generate variables is when you're writing code to create or manipulate class objects themselves (e.g. producing methods automatically). This is somewhat easier and less fraught than creating global variables, since at least the programmatically produced names will be contained within the class namespace rather than polluting the global namespace.
The collections.NamedTuple class factory from the standard library, for example, creates tuple subclasses on demand, with special descriptors as attributes that allow the tuple's values to be accessed by name. Here's a very crude example of how you could do something vaguely similar yourself, using getattr and setattr to manipulate attributes on the fly:
def my_named_tuple(attribute_names):
class Tup:
def __init__(self, *args):
if len(args) != len(attribute_names):
raise ValueError("Wrong number of arguments")
for name, value in zip(attribute_names, args):
setattr(self, name, value) # this programmatically sets attributes by name!
def __iter__(self):
for name in attribute_names:
yield getattr(self, name) # you can look up attributes by name too
def __getitem__(self, index):
name = attribute_names[index]
if isinstance(index, slice):
return tuple(getattr(self, n) for n in name)
return getattr(self, name)
return Tup
It works like this:
>>> T = my_named_tuple(['foo', 'bar'])
>>> i = T(1, 2)
>>> i.foo
1
>>> i.bar
2
If i did understood your question correctly, i think you can do something like this using globals():
class A:
pass
class B:
pass
class C:
pass
def create_new_instances(classes):
for cls in classes:
name = '{}__'.format(cls.__name__)
obj = cls()
obj.__class__.__name__ = name
globals()[name] = obj
if __name__ == '__main__':
classes = [A, B, C]
create_new_instances(classes)
classes_new = [globals()[k] for k in globals() if k.endswith('__') and not k.startswith('__')]
for cls in classes_new:
print(cls.__class__.__name__, repr(cls))
Output (you'll get a similar ouput):
A__ <__main__.A object at 0x7f7fac6905c0>
C__ <__main__.C object at 0x7f7fac6906a0>
B__ <__main__.B object at 0x7f7fac690630>

Dynamically add methods to a class in Python 3.0

I'm trying to write a Database Abstraction Layer in Python which lets you construct SQL statments using chained function calls such as:
results = db.search("book")
.author("J. K. Rowling")
.price("<40.00")
.title("Harry")
.execute()
but I am running into problems when I try to dynamically add the required methods to the db class.
Here is the important parts of my code:
import inspect
def myName():
return inspect.stack()[1][3]
class Search():
def __init__(self, family):
self.family = family
self.options = ['price', 'name', 'author', 'genre']
#self.options is generated based on family, but this is an example
for opt in self.options:
self.__dict__[opt] = self.__Set__
self.conditions = {}
def __Set__(self, value):
self.conditions[myName()] = value
return self
def execute(self):
return self.conditions
However, when I run the example such as:
print(db.search("book").price(">4.00").execute())
outputs:
{'__Set__': 'harry'}
Am I going about this the wrong way? Is there a better way to get the name of the function being called or to somehow make a 'hard copy' of the function?
You can simply add the search functions (methods) after the class is created:
class Search: # The class does not include the search methods, at first
def __init__(self):
self.conditions = {}
def make_set_condition(option): # Factory function that generates a "condition setter" for "option"
def set_cond(self, value):
self.conditions[option] = value
return self
return set_cond
for option in ('price', 'name'): # The class is extended with additional condition setters
setattr(Search, option, make_set_condition(option))
Search().name("Nice name").price('$3').conditions # Example
{'price': '$3', 'name': 'Nice name'}
PS: This class has an __init__() method that does not have the family parameter (the condition setters are dynamically added at runtime, but are added to the class, not to each instance separately). If Search objects with different condition setters need to be created, then the following variation on the above method works (the __init__() method has a family parameter):
import types
class Search: # The class does not include the search methods, at first
def __init__(self, family):
self.conditions = {}
for option in family: # The class is extended with additional condition setters
# The new 'option' attributes must be methods, not regular functions:
setattr(self, option, types.MethodType(make_set_condition(option), self))
def make_set_condition(option): # Factory function that generates a "condition setter" for "option"
def set_cond(self, value):
self.conditions[option] = value
return self
return set_cond
>>> o0 = Search(('price', 'name')) # Example
>>> o0.name("Nice name").price('$3').conditions
{'price': '$3', 'name': 'Nice name'}
>>> dir(o0) # Each Search object has its own condition setters (here: name and price)
['__doc__', '__init__', '__module__', 'conditions', 'name', 'price']
>>> o1 = Search(('director', 'style'))
>>> o1.director("Louis L").conditions # New method name
{'director': 'Louis L'}
>>> dir(o1) # Each Search object has its own condition setters (here: director and style)
['__doc__', '__init__', '__module__', 'conditions', 'director', 'style']
Reference: http://docs.python.org/howto/descriptor.html#functions-and-methods
If you really need search methods that know about the name of the attribute they are stored in, you can simply set it in make_set_condition() with
set_cond.__name__ = option # Sets the function name
(just before the return set_cond). Before doing this, method Search.name has the following name:
>>> Search.price
<function set_cond at 0x107f832f8>
after setting its __name__ attribute, you get a different name:
>>> Search.price
<function price at 0x107f83490>
Setting the method name this way makes possible error messages involving the method easier to understand.
Firstly, you are not adding anything to the class, you are adding it to the instance.
Secondly, you don't need to access dict. The self.__dict__[opt] = self.__Set__ is better done with setattr(self, opt, self.__Set__).
Thirdly, don't use __xxx__ as attribute names. Those are reserved for Python-internal use.
Fourthly, as you noticed, Python is not easily fooled. The internal name of the method you call is still __Set__, even though you access it under a different name. :-) The name is set when you define the method as a part of the def statement.
You probably want to create and set the options methods with a metaclass. You also might want to actually create those methods instead of trying to use one method for all of them. If you really want to use only one __getattr__ is the way, but it can be a bit fiddly, I generally recommend against it. Lambdas or other dynamically generated methods are probably better.
Here is some working code to get you started (not the whole program you were trying to write, but something that shows how the parts can fit together):
class Assign:
def __init__(self, searchobj, key):
self.searchobj = searchobj
self.key = key
def __call__(self, value):
self.searchobj.conditions[self.key] = value
return self.searchobj
class Book():
def __init__(self, family):
self.family = family
self.options = ['price', 'name', 'author', 'genre']
self.conditions = {}
def __getattr__(self, key):
if key in self.options:
return Assign(self, key)
raise RuntimeError('There is no option for: %s' % key)
def execute(self):
# XXX do something with the conditions.
return self.conditions
b = Book('book')
print(b.price(">4.00").author('J. K. Rowling').execute())

Resources