Server configuration for virtual servers - security

From what I'm aware, best practices regarding server configuration is to have a separate server for your web server and your database server. The web server would have the relevant ports (80 and 443) exposed to internet traffic, while the database server would be completely blocked from access for everything except for networked connections between the web server.
As far as I'm aware, there are three main reasons for doing this:
1) Any sort of attack that allowed someone to gain access to the web server would ideally not allow them access to the server which actually contained the data, so the data becomes more secure. Also, an attack that brings down the web server could theoretically be resolved by rerouting traffic to a different web server connected to the same database server, thus minimizing downtime.
2) Resources consumed by the web server are separated from those for the database server so, for example, a large amount of traffic on the web server would not slow down performance on the database server
3) The machines are somewhat more scalable, since, for example, if the problem ends up being that there is too much load on the web server, it can be upgraded independently of the database server
Can these same benefits be gained by using a single machine with two VMs installed on it, one for the web server and one for the database server? The third benefit is of course not possible, since there's only one physical server. But how about the first two?
It seems to me like the first benefit is still intact, since an attack that gains access to the web server would theoretically not allow similar access to the database server, and, as far as I'm aware, gaining access to the virtual machine does not provide access to it's parent physical machine.
The second benefit seems somewhat less relevant, since there is really only one pool of resources that are being split between the two machines, so in fact, it would probably be better to not split them, as it would allow a bigger pool to draw from.
Am I overthinking this? Is the fact that there is only one physical machine pretty much the end of the story, and splitting it into two separate VMs a complete waste of time and resources?

Related

Shared web hosting with node.js?

I'm a teacher in a training center for web development. We're teaching PHP and Node.js for the backend. In this context, it's very cool to allow our students to deploy small web servers. Unfortunately paying for one VPS per student ain't cheap, and free web hosting solutions are usually too limited.
That's why we go for the shared hosting route with unused computers, Raspberry-pis or small VPSs and create an account for each student.
With PHP it's easy. People do a shared hosting with PHP since decades and there's basically a complete feature in Apache to do that super easily (per-user web directories). We just add some shared database, script the initialization of users and we're ready to go.
For node.js... it's another story. No one seems to care about shared hosting in that community and everyone just pops a new VPS for each application or make a manual configuration with root access on a custom server.
To allow somewhat secure solution for automatic shared hosting with Node.js I would need some kind of application server that could:
Read through user directories (or multiple directories based on a pattern) for some source JavaScript files to execute.
Launch different applications with different users (for security purposes).
Kill and restart applications depending on incoming requests and usage of RAM (you can't launch simultaneously 30 node.js apps that consume 30 Mb of RAM minimum on a VPS with 512Mb or Ram, no you can't)
Monitor the node.js applications in order to avoid crashes if one of them does something bad (purposely or not, we're talking about web dev students... :) )
Theorically I know some web servers that could potentially be configured to do that (uWsgi and Passenger are the first that come to my mind). But I fear I could take multiple hours or days trying to alter their default behavior before realizing that I just set up a crappy solution that will crash after two days in production.
So... does anyone has some kind of solution for that use case? I'm open to anything, even Docker-based solutions. Just remember the three magic words: security, security and security. We just can't allow anyone to have root accounts on a server we own or to make it crash by too much consuming RAM or CPU.
Thanks in advance for your answers.

Is it slower to employ "name-based" hosting of multiple websites on one VPS?

Assuming traffic/server load is not a factor ...
(Taken further, we could even assume that there are zero visitors, and I just happen to visit one of my websites in a "vacuum")
... Would there theoretically be any difference in the loading time if I were to host only a single site on my VPS vs. hosting multiple sites using the "name-based" method?
(Even if it is minuscule, I would still like to know—and why, ideally!)
So there are a tons of different ways to look at this, most importantly is what type of applications are running.
What I mean by this is if your running a static webpage for each and using simple domain based routing (nginx or apache) you will see no difference, other than added disk space.
On the other hand you could be running more advanced web applications, for most cases (provided traffic is not a factor) when a request is made to the web server processes it and returns the response, only using possessing time during the request. This also will see no difference.
But! When the application requires added programs and background processing you will see a performance difference minuscule but as you add more "domains" you will see greater performance hit.
Static Pages: No difference (besides disk space)
Web Applications: Difference based on non-request based processing
You are asking what is at the root of shared hosting. Which is amazing for static and basic programs but not so good when you scale it up to larger applications.
Sidenote: This is assuming the applications are not of different run-times and requirements thus having a python + mySql and a node.js + MongoDB at the same time on a weak server would see a performance hit as the services are always running

I'm not sure how to correctly configure my server setup

This is kind of a multi-tiered question in which my end goal is to establish the best way to setup my server which will be hosting a website as well as a service (using Socket.io) for an iOS (and eventually an Android) app. Both the app service and the website are going to be written in node.js as I need high concurrency and scaling for the app server and I figured whilst I'm at it may as well do the website in node because it wouldn't be that much different in terms of performance than something different like Apache (from my understanding).
Also the website has a lower priority than the app service, the app service should receive significantly higher traffic than the website (but in the long run this may change). Money isn't my greatest priority here, but it is a limiting factor, I feel that having a service that has 99.9% uptime (as 100% uptime appears to be virtually impossible in the long run) is more important than saving money at the compromise of having more down time.
Firstly I understand that having one node process per cpu core is the best way to fully utilise a multi-core cpu. I now understand after researching that running more than one per core is inefficient due to the fact that the cpu has to do context switching between the multiple processes. How come then whenever I see code posted on how to use the in-built cluster module in node.js, the master worker creates a number of workers equal to the number of cores because that would mean you would have 9 processes on an 8 core machine (1 master process and 8 worker processes)? Is this because the master process usually is there just to restart worker processes if they crash or end and therefore does so little it doesnt matter that it shares a cpu core with another node process?
If this is the case then, I am planning to have the workers handle providing the app service and have the master worker handle the workers but also host a webpage which would provide statistical information on the server's state and all other relevant information (like number of clients connected, worker restart count, error logs etc). Is this a bad idea? Would it be better to have this webpage running on a separate worker and just leave the master worker to handle the workers?
So overall I wanted to have the following elements; a service to handle the request from the app (my main point of traffic), a website (fairly simple, a couple of pages and a registration form), an SQL database to store user information, a webpage (probably locally hosted on the server machine) which only I can access that hosts information about the server (users connected, worker restarts, server logs, other useful information etc) and apparently nginx would be a good idea where I'm handling multiple node processes accepting connection from the app. After doing research I've also found that it would probably be best to host on a VPS initially. I was thinking at first when the amount of traffic the app service would be receiving will most likely be fairly low, I could run all of those elements on one VPS. Or would it be best to have them running on seperate VPS's except for the website and the server status webpage which I could run on the same one? I guess this way if there is a hardware failure and something goes down, not everything does and I could run 2 instances of the app service on 2 different VPS's so if one goes down the other one is still functioning. Would this just be overkill? I doubt for a while I would need multiple app service instances to support the traffic load but it would help reduce the apparent down time for users.
Maybe this all depends on what I value more and have the time to do? A more complex server setup that costs more and maybe a little unnecessary but guarantees a consistent and reliable service, or a cheaper and simpler setup that may succumb to downtime due to coding errors and server hardware issues.
Also it's worth noting I've never had any real experience with production level servers so in some ways I've jumped in the deep end a little with this. I feel like I've come a long way in the past half a year and feel like I'm getting a fairly good grasp on what I need to do, I could just do with some advice from someone with experience that has an idea with what roadblocks I may come across along the way and whether I'm causing myself unnecessary problems with this kind of setup.
Any advice is greatly appreciated, thanks for taking the time to read my question.

Scaling Node.JS across multiple cores / servers

Ok so I have an idea I want to peruse but before I do I need to understand a few things fully.
Firstly the way I think im going to go ahead with this system is to have 3 Server which are described below:
The First Server will be my web Front End, this is the server that will be listening for connection and responding to clients, this server will have 8 cores and 16GB Ram.
The Second Server will be the Database Server, pretty self explanatory really, connect to the host and set / get data.
The Third Server will be my storage server, this will be where downloadable files are stored.
My first questions is:
On my front end server, I have 8 cores, what's the best way to scale node so that the load is distributed across the cores?
My second question is:
Is there a system out there I can drop into my application framework that will allow me to talk to the other cores and pass messages around to save I/O.
and final question:
Is there any system I can use to help move the content from my storage server to the request on the front-end server with as little overhead as possible, speed is a concern here as we would have 500+ clients downloading and uploading concurrently at peak times.
I have finally convinced my employer that node.js is extremely fast and its the latest in programming technology, and we should invest in a platform for our Intranet system, but he has requested detailed documentation on how this could be scaled across the current hardware we have available.
On my front end server, I have 8
cores, what's the best way to scale
node so that the load is distributed
across the cores?
Try to look at node.js cluster module which is a multi-core server manager.
Firstly, I wouldn't describe the setup you propose as 'scaling', it's more like 'spreading'. You only have one app server serving the requests. If you add more app servers in the future, then you will have a scaling problem then.
I understand that node.js is single-threaded, which implies that it can only use a single core. Not my area of expertise on how to/if you can scale it, will leave that part to someone else.
I would suggest NFS mounting a directory on the storage server to the app server. NFS has relatively low overhead. Then you can access the files as if they were local.
Concerning your first question: use cluster (we already use it in a production system, works like a charm).
When it comes to worker messaging, i cannot really help you out. But your best bet is cluster too. Maybe there will be some functionality that provides "inter-core" messaging accross all cluster workers in the future (don't know the roadmap of cluster, but it seems like an idea).
For your third requirement, i'd use a low-overhead protocol like NFS or (if you can go really crazy when it comes to infrastructure) a high-speed SAN backend.
Another advice: use MongoDB as your database backend. You can start with low-end hardware and scale up your database instance with ease using MongoDB's sharding/replication set features (if that is some kind of requirement).

Architecture recommendation for load-balanced ASP.NET site

UPDATE 2009-05-21
I've been testing the #2 method of using a single network share. It is resulting in some issues with Windows Server 2003 under load:
http://support.microsoft.com/kb/810886
end update
I've received a proposal for an ASP.NET website that works as follows:
Hardware load-balancer -> 4 IIS6 web servers -> SQL Server DB with failover cluster
Here's the problem...
We are choosing where to store the web files (aspx, html, css, images). Two options have been proposed:
1) Create identical copies of the web files on each of the 4 IIS servers.
2) Put a single copy of the web files on a network share accessible by the 4 web servers. The webroots on the 4 IIS servers will be mapped to the single network share.
Which is the better solution?
Option 2 obviously is simpler for deployments since it requires copying files to only a single location. However, I wonder if there will be scalability issues since four web servers are all accessing a single set of files. Will IIS cache these files locally? Would it hit the network share on every client request?
Also, will access to a network share always be slower than getting a file on a local hard drive?
Does the load on the network share become substantially worse if more IIS servers are added?
To give perspective, this is for a web site that currently receives ~20 million hits per month. At recent peak, it was receiving about 200 hits per second.
Please let me know if you have particular experience with such a setup. Thanks for the input.
UPDATE 2009-03-05
To clarify my situation - the "deployments" in this system are far more frequent than a typical web application. The web site is the front end for a back office CMS. Each time content is published in the CMS, new pages (aspx, html, etc) are automatically pushed to the live site. The deployments are basically "on demand". Theoretically, this push could happen several times within a minute or more. So I'm not sure it would be practical to deploy one web server at time. Thoughts?
I'd share the load between the 4 servers. It's not that many.
You don't want that single point of contention either when deploying nor that single point of failure in production.
When deploying, you can do them 1 at a time. Your deployment tools should automate this by notifying the load balancer that the server shouldn't be used, deploying the code, any pre-compilation work needed, and finally notifying the load balancer that the server is ready.
We used this strategy in a 200+ web server farm and it worked nicely for deploying without service interruption.
If your main concern is performance, which I assume it is since you're spending all this money on hardware, then it doesn't really make sense to share a network filesystem just for convenience sake. Even if the network drives are extremely high performing, they won't perform as well as native drives.
Deploying your web assets are automated anyway (right?) so doing it in multiples isn't really much of an inconvenience.
If it is more complicated than you're letting on, then maybe something like DeltaCopy would be useful to keep those disks in sync.
One reason the central share is bad is because it makes the NIC on the share server the bottleneck for the whole farm and creates a single point of failure.
With IIS6 and 7, the scenario of using a network single share across N attached web/app server machines is explicitly supported. MS did a ton of perf testing to make sure this scenario works well. Yes, caching is used. With a dual-NIC server, one for the public internet and one for the private network, you'll get really good performance. The deployment is bulletproof.
It's worth taking the time to benchmark it.
You can also evaluate a ASP.NET Virtual Path Provider, which would allow you to deploy a single ZIP file for the entire app. Or, with a CMS, you could serve content right out of a content database, rather than a filesystem. This presents some really nice options for versioning.
VPP For ZIP via #ZipLib.
VPP for ZIP via DotNetZip.
In an ideal high-availability situation, there should be no single point of failure.
That means a single box with the web pages on it is a no-no. Having done HA work for a major Telco, I would initially propose the following:
Each of the four servers has it's own copy of the data.
At a quiet time, bring two of the servers off-line (i.e., modify the HA balancer to remove them).
Update the two off-line servers.
Modify the HA balancer to start using the two new servers and not the two old servers.
Test that to ensure correctness.
Update the two other servers then bring them online.
That's how you can do it without extra hardware. In the anal-retentive world of the Telco I worked for, here's what we would have done:
We would have had eight servers (at the time, we had more money than you could poke a stick at). When the time came for transition, the four offline servers would be set up with the new data.
Then the HA balancer would be modified to use the four new servers and stop using the old servers. This made switchover (and, more importantly, switchback if we stuffed up) a very fast and painless process.
Only when the new servers had been running for a while would we consider the next switchover. Up until that point, the four old servers were kept off-line but ready, just in case.
To get the same effect with less financial outlay, you could have extra disks rather than whole extra servers. Recovery wouldn't be quite as quick since you'd have to power down a server to put the old disk back in, but it would still be faster than a restore operation.
Use a deployment tool, with a process that deploys one at a time and the rest of the system keeps working (as Mufaka said). This is a tried process that will work with both content files and any compiled piece of the application (which deploy causes a recycle of the asp.net process).
Regarding the rate of updates this is something you can control. Have the updates go through a queue, and have a single deployment process that controls when to deploy each item. Notice this doesn't mean you process each update separately, as you can grab the current updates in the queue and deploy them together. Further updates will arrive to the queue, and will be picked up once the current set of updates is over.
Update: About the questions in the comment. This is a custom solution based on my experience with heavy/long processes which needs their rate of updates controlled. I haven't had the need to use this approach for deployment scenarios, as for such dynamic content I usually go with a combination of DB and cache at different levels.
The queue doesn't need to hold the full information, it just need to have the appropriate info (ids/paths) that will let your process pass the info to start the publishing process with an external tool. As it is custom code, you can have it join the information to be published, so you don't have to deal with that in the publishing process/tool.
The DB changes would be done during the publishing process, again you just need to know where the info for the required changes is and let the publishing process/tool handle it. Regarding what to use for the queue, the main ones I have used is msmq and a custom implementation with info in sql server. The queue is just there to control the rate of the updates, so you don't need anything specially targeted at deployments.
Update 2: make sure your DB changes are backwards compatible. This is really important, when you are pushing changes live to different servers.
I was in charge of development for a game website that had 60 million hits a month. The way we did it was option #1. User did have the ability to upload images and such and those were put on a NAS that was shared between the servers. It worked out pretty well. I'm assuming that you are also doing page caching and so on, on the application side of the house. I would also deploy on demand, the new pages to all servers simultaneously.
What you gain on NLB with the 4IIS you loose it with the BottleNeck with the app server.
For scalability I'll recommend the applications on the front end web servers.
Here in my company we are implementing that solution. The .NET app in the front ends and an APP server for Sharepoint + a SQL 2008 Cluster.
Hope it helps!
regards!
We have a similar situation to you and our solution is to use a publisher/subscriber model. Our CMS app stores the actual files in a database and notifies a publishing service when a file has been created or updated. This publisher then notifies all the subscribing web applications and they then go and get the file from the database and place it on their file systems.
We have the subscribers set in a config file on the publisher but you could go the whole hog and have the web app do the subscription itself on app startup to make it even easier to manage.
You could use a UNC for the storage, we chose a DB for convenience and portability between or production and test environments (we simply copy the DB back and we have all the live site files as well as the data).
A very simple method of deploying to multiple servers (once the nodes are set up correctly) is to use robocopy.
Preferably you'd have a small staging server for testing and then you'd 'robocopy' to all deployment servers (instead of using a network share).
robocopy is included in the MS ResourceKit - use it with the /MIR switch.
To give you some food for thought you could look at something like Microsoft's Live Mesh
. I'm not saying it's the answer for you but the storage model it uses may be.
With the Mesh you download a small Windows Service onto each Windows machine you want in your Mesh and then nominate folders on your system that are part of the mesh. When you copy a file into a Live Mesh folder - which is the exact same operation as copying to any other foler on your system - the service takes care of syncing that file to all your other participating devices.
As an example I keep all my code source files in a Mesh folder and have them synced between work and home. I don't have to do anything at all to keep them in sync the action of saving a file in VS.Net, notepad or any other app initiates the update.
If you have a web site with frequently changing files that need to go to multiple servers, and presumably mutliple authors for those changes, then you could put the Mesh service on each web server and as authors added, changed or removed files the updates would be pushed automatically. As far as the authors go they would just be saving their files to a normal old folder on their computer.
Assuming your IIS servers are running Windows Server 2003 R2 or better, definitely look into DFS Replication. Each server has it's own copy of the files which eliminates a shared network bottleneck like many others have warned against. Deployment is as simple as copying your changes to any one of the servers in the replication group (assuming a full mesh topology). Replication takes care of the rest automatically including using remote differential compression to only send the deltas of files that have changed.
We're pretty happy using 4 web servers each with a local copy of the pages and a SQL Server with a fail over cluster.

Resources