How to find superpixels' centroid using masked region? - python-3.x

Newbie here! I'm working with python plus opencv and skimage packages. I've segmented an image in superpixels using:
segments = slic(image, n_segments=numSegments, sigma=1, convert2lab=True)
I can access every superpixel with:
#FOR-LOOP-1
for v in np.unique(segments):
#create a mask to access one region at the time
mask = np.ones(image.shape[:2])
mask[segments == v] = 0
#my function to calculate mean of A channel in LAB color space
A = mean_achannel(img, mask)
Now I'd like to get the coordinates associated with each superpixel's centroid, how can I do that?
I tried using:
from skimage.measure import regionprops
#FOR-LOOP-2
regions = regionprops(segments)
for props in regions:
cx, cy = props.centroid # centroid coordinates
But I can't understand how to link each region in the "FOR-LOOP-2" with the right one in the "FOR-LOOP-1". How can I calculate each region centroid inside "FOR-LOOP-1"?

All the desired values can be found using regionprops in for-loop-2:
from skimage.measure import regionprops
#FOR-LOOP-2
regions = regionprops(segments,
intensity_image=img[..., 1])
for props in regions:
cx, cy = props.centroid # centroid coordinates
v = props.label # value of label
mean_a = props.mean_intensity

Related

Bokeh Widget distorts plot with tile provider

When changing the color through the given widget first, the plot distorts. When first moving the map with the cursor and then changing the color, the plot does not distort. This only happens when a tile background is added. Thus the problem might lay in a difference in the underlaying projection / CRS of the plot and the tile that somehow gets changed in the background (?).
If you are able to find the problem, it would be great if you could also link to resources how you did that so I learn how to debug more in depth.
My browser: Brave (Chromium based)
Simple working example:
props to bigreddot as this working example is mostly based on his answer.
from bokeh.layouts import grid
from bokeh.models.widgets.inputs import ColorPicker
from bokeh.sampledata import us_states
from bokeh.plotting import *
from bokeh.tile_providers import get_provider, CARTODBPOSITRON
us_states = us_states.data.copy()
del us_states["HI"]
del us_states["AK"]
# separate latitude and longitude points for the borders
# of the states.
state_xs = [us_states[code]["lons"] for code in us_states]
state_ys = [us_states[code]["lats"] for code in us_states]
# init figure
p = figure(title="Plotting Points Example: The 5 Largest Cities in Texas",
toolbar_location="left", plot_width=1100, plot_height=700)
p.xgrid.grid_line_color = None
p.ygrid.grid_line_color = None
# Draw state lines
p.patches(state_xs, state_ys, fill_alpha=0.0,
line_color="#884444", line_width=1.5)
# Latitude and Longitude of 5 Cities
# ------------------------------------
# Austin, TX -------30.26° N, 97.74° W
# Dallas, TX -------32.77° N, 96.79° W
# Fort Worth, TX ---32.75° N, 97.33° W
# Houston, TX ------29.76° N, 95.36° W
# San Antonio, TX --29.42° N, 98.49° W
# Now group these values together into a lists of x (longitude) and y (latitude)
x = [-97.7431, -96.79, -97.33, -95.36, -98.49]
y = [30.26, 32.77, 32.75, 29.76, 29.42]
# add basemap and labels
tile_provider = get_provider(CARTODBPOSITRON)
p.add_tile(tile_provider)
points = p.circle(x, y, size=8, color='navy', alpha=1)
picker = ColorPicker(title=f"Point Color", color="navy")
picker.js_link("color", points.glyph, "fill_color")
# output to static HTML file
output_file("texas.html")
l = grid([p, picker], ncols=2, sizing_mode="fixed")
# show results
show(l)
The display via the grid is not the problem - it also occurs if you display the plot via:
show(column([p, picker]))
As indicated here one need to add
p.match_aspect = True
to the above code before the output. This resolves the issue of randomly changing ratios.

Align 3D object to direction vector

I represent a vtk poly data object that I read with vtkPlyReader and want to align it to given normalized direction vector, so that its orientation matches with that vector.
directionVector = np.array([-0.1134, -0.0695, 0.9911])
plyReader = vtk.vtkPLYReader()
plyReader.SetFileName(filePath)
transform = vtk.vtkTransform()
transform.RotateWXYZ(-90, 0, 0, 1) #initial rotation
transformFilter = vtk.vtkTransformPolyDataFilter()
transformFilter.SetTransform(transform)
transformFilter.SetInputConnection(plyReader.GetOutputPort())
transformFilter.Update()
mapper = vtk.vtkPolyDataMapper()
mapper.SetInputConnection(transformFilter.GetOutputPort())
mapper.ScalarVisibilityOn()
mapper.Update()
actor = vtk.vtkActor()
actor.SetMapper(mapper)
actor.Modified()
renderer.AddActor(actor)
I know that I should use the Rotate() function from vtkTransform but don't know how to align it.
You can try something like:
rotation = 0 # around new axis
initaxis = [0,0,1] # old object's axis
crossvec = np.cross(initaxis, newaxis)
angle = np.arccos(np.dot(initaxis, newaxis))
T = vtk.vtkTransform()
T.PostMultiply()
T.Translate(-pos)
if rotation:
T.RotateWXYZ(rotation, initaxis)
T.RotateWXYZ(np.rad2deg(angle), crossvec)
T.Translate(pos)
E.g. vedo uses the above
from vedo import Cube, show
c0 = Cube(side=2).lw(1)
c1 = c0.clone().alpha(0.2).c('tomato')
c1.orientation([1,1,1], rotation=20).pos([2,2,0])
show(c0, c1, axes=1)

How could I edit my code to plot 4D contour something similar to this example in python?

Similar to many other researchers on stackoverflow who are trying to plot a contour graph out of 4D data (i.e., X,Y,Z and their corresponding value C), I am attempting to plot a 4D contour map out of my data. I have tried many of the suggested solutions in stackover flow. From all of the plots suggested this, and this were the closest to what I want but sill not quite what I need in terms of data interpretation. Here is the ideal plot example: (source)
Here is a subset of the data. I put it on the dropbox. Once this data is downloaded to the directory of the python file, the following code will work. I have modified this script from this post.
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import matplotlib.tri as mtri
#####Importing the data
df = pd.read_csv('Data_4D_plot.csv')
do_random_pt_example = False;
index_x = 0; index_y = 1; index_z = 2; index_c = 3;
list_name_variables = ['x', 'y', 'z', 'c'];
name_color_map = 'seismic';
if do_random_pt_example:
number_of_points = 200;
x = np.random.rand(number_of_points);
y = np.random.rand(number_of_points);
z = np.random.rand(number_of_points);
c = np.random.rand(number_of_points);
else:
x = df['X'].to_numpy();
y = df['Y'].to_numpy();
z = df['Z'].to_numpy();
c = df['C'].to_numpy();
#end
#-----
# We create triangles that join 3 pt at a time and where their colors will be
# determined by the values of their 4th dimension. Each triangle contains 3
# indexes corresponding to the line number of the points to be grouped.
# Therefore, different methods can be used to define the value that
# will represent the 3 grouped points and I put some examples.
triangles = mtri.Triangulation(x, y).triangles;
choice_calcuation_colors = 2;
if choice_calcuation_colors == 1: # Mean of the "c" values of the 3 pt of the triangle
colors = np.mean( [c[triangles[:,0]], c[triangles[:,1]], c[triangles[:,2]]], axis = 0);
elif choice_calcuation_colors == 2: # Mediane of the "c" values of the 3 pt of the triangle
colors = np.median( [c[triangles[:,0]], c[triangles[:,1]], c[triangles[:,2]]], axis = 0);
elif choice_calcuation_colors == 3: # Max of the "c" values of the 3 pt of the triangle
colors = np.max( [c[triangles[:,0]], c[triangles[:,1]], c[triangles[:,2]]], axis = 0);
#end
#----------
###=====adjust this part for the labeling of the graph
list_name_variables[index_x] = 'X (m)'
list_name_variables[index_y] = 'Y (m)'
list_name_variables[index_z] = 'Z (m)'
list_name_variables[index_c] = 'C values'
# Displays the 4D graphic.
fig = plt.figure(figsize = (15,15));
ax = fig.gca(projection='3d');
triang = mtri.Triangulation(x, y, triangles);
surf = ax.plot_trisurf(triang, z, cmap = name_color_map, shade=False, linewidth=0.2);
surf.set_array(colors); surf.autoscale();
#Add a color bar with a title to explain which variable is represented by the color.
cbar = fig.colorbar(surf, shrink=0.5, aspect=5);
cbar.ax.get_yaxis().labelpad = 15; cbar.ax.set_ylabel(list_name_variables[index_c], rotation = 270);
# Add titles to the axes and a title in the figure.
ax.set_xlabel(list_name_variables[index_x]); ax.set_ylabel(list_name_variables[index_y]);
ax.set_zlabel(list_name_variables[index_z]);
ax.view_init(elev=15., azim=45)
plt.show()
Here would be the output:
Although it looks brilliant, it is not quite what I am looking for (the above contour map example). I have modified the following script from this post in the hope to reach the required graph, however, the chart looks nothing similar to what I was expecting (something similar to the previous output graph). Warning: the following code may take some time to run.
import matplotlib
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import numpy as np
df = pd.read_csv('Data_4D_plot.csv')
x = df['X'].to_numpy();
y = df['Y'].to_numpy();
z = df['Z'].to_numpy();
cc = df['C'].to_numpy();
# convert to 2d matrices
Z = np.outer(z.T, z)
X, Y = np.meshgrid(x, y)
C = np.outer(cc.T,cc)
# fourth dimention - colormap
# create colormap according to cc-value
color_dimension = C # change to desired fourth dimension
minn, maxx = color_dimension.min(), color_dimension.max()
norm = matplotlib.colors.Normalize(minn, maxx)
m = plt.cm.ScalarMappable(norm=norm, cmap='jet')
m.set_array([])
fcolors = m.to_rgba(color_dimension)
# plot
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(X,Y,Z, rstride=1, cstride=1, facecolors=fcolors, vmin=minn, vmax=maxx, shade=False)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
Now I was wondering from our kind community and experts if you can help me to plot a contour figure similar to the example graph (image one in this post), where the contours are based on the values within the range of C?

Set centre of geopandas map

I can plot a world map with geopandas with:
world = geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres'))
fig, ax = plt.subplots()
world.plot(ax=ax, color=(0.8,0.5,0.5))
and it works fine, but I would like to center the map on a different longitude than the Prime Meridian. How do I do this?
This is how you can do it:
from shapely.geometry import LineString
from shapely.ops import split
from shapely.affinity import translate
import geopandas
world = geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres'))
def shift_map(shift):
shift -= 180
moved_map = []
splitted_map = []
border = LineString([(shift,90),(shift,-90)])
for row in world["geometry"]:
splitted_map.append(split(row, border))
for element in splitted_map:
items = list(element)
for item in items:
minx, miny, maxx, maxy = item.bounds
if minx >= shift:
moved_map.append(translate(item, xoff=-180-shift))
else:
moved_map.append(translate(item, xoff=180-shift))
gdf = geopandas.GeoDataFrame({"geometry":moved_map})
fig, ax = plt.subplots()
gdf.plot(ax=ax)
plt.show()
In the first step, you create your world and split it on a pre defined border of yours.
Then you get the bounds of all elements and check if the bounds match your desired shift. Afterwards you translate every element bigger than your border to the left side of the map and move all other elements to the right side, so that they aling with +180°.
This gives you for example:
A map shifted by 120°
Like in this question I needed to reset the centre of the map, but I also needed to move scatter plot network node positions that where bound to (long,lat) coordinates too.
I am hoping to save someone some time, as it's probably not obvious initially that to solve this problem you will have to wrangle some unfamiliar types.
Here is a method for shifting both the underlying map and some additional points:
import geopandas
world =
geopandas.read_file(geopandas.datasets.get_path('naturalearth_lowres'))
import matplotlib.pyplot as plt
import geopandas as gpd
from shapely.geometry import LineString
from shapely.ops import split
from shapely.affinity import translate
def shift_geom(shift, gdataframe,pos_all, plotQ=True):
# this code is adapted from answer found in SO
# will be credited here: ???
shift -= 180
moved_geom = []
splitted_geom = []
border = LineString([(shift,90),(shift,-90)])
for row in gdataframe["geometry"]:
splitted_geom.append(split(row, border))
for element in splitted_geom:
items = list(element)
for item in items:
minx, miny, maxx, maxy = item.bounds
if minx >= shift:
moved_geom.append(translate(item, xoff=-180-shift))
else:
moved_geom.append(translate(item, xoff=180-shift))
# got `moved_geom` as the moved geometry
moved_geom_gdf = gpd.GeoDataFrame({"geometry": moved_geom})
# can change crs here
if plotQ:
fig1, ax1 = plt.subplots(figsize=[8,6])
moved_geom_gdf.plot(ax=ax1)
plt.show()
df = pd.DataFrame({'Latitude': [xy[1] for xy in pos_all.values()],
'Longitude': [xy[0] for xy in pos_all.values()]})
gdf = geopandas.GeoDataFrame(df, geometry=geopandas.points_from_xy(df.Longitude, df.Latitude))
border2 = LineString([(shift,90),(shift,-90)])
geom = gdf.geometry.values
moved_map_points = []
moved_map_dict = {}
for element,key in zip(geom,list(pos_all.keys())):
if float(element.x) >= shift:
moved_map_points.append(translate(element, xoff=-180-shift))
else:
moved_map_points.append(translate(element, xoff=180-shift))
moved_map_dict[key] = (moved_map_points[-1].x,moved_map_points[-1].y)
return moved_geom_gdf,moved_map_dict
In this context pos_all are networkx node positions made of [(lat,long)]
shifted_world,moved_map_points = shift_geom(300, world,pos_all,plotQ= False)

Recover elements from each cluster generated by scipy dendrogram

I'm building a dendrogram and truncating it to show only the largest 6 clusters. Also, the labeling is done via a simple leaf label function:
def llf(id):
return str(id)
tree = sch.dendrogram(Z, truncate_mode='lastp',
leaf_label_func=llf, p=6, show_contracted=False,
show_leaf_counts=False, leaf_rotation=90,
no_labels = False, orientation='right')
My output looks like this:
My goal is to replace the non descriptive labels for the leaves with the minimum value of the members from within that cluster. For example, if the top leaf is the cluster that contains the range from 10 to 1000, then I would like to replace '2468' with 10. The actual logic to replace the ticks in the plot is easy to implement:
fig, ax = plt.subplots()
mislabels = ["foo" for i in range(7)]
ax.set_xticklabels(mislabels, fontsize=10, rotation=45)
Any ideas regarding how to extract the values from within the leaders?
So far I'm able to map each singleton leaf to its cluster using fcluster. However, that only maps my initial 1230 points to a cluster. I need to map the point labeled as '2468' to its cluster and I'm not sure how to do that.
Thanks!
I found the way to do it
fig, ax = plt.subplots(2,2,figsize=(10,5))
ax = ax.ravel()
# [idx_plot[k]:, idx_plot[k]:]
for k, val in enumerate(linkages['ward']):
cluster_local = cluster_labels[val]['ward'][6]
leaders = sch.leaders(linkages['ward'][val], cluster_local)
dates_labels = dict()
for v, i in enumerate(leaders[1]):
date_idx = np.where(cluster_local == i)
dates_labels[leaders[0][v]] = (fechas[val][idx_plot[val]:][date_idx[0][0]].strftime('%y/%m'), fechas[val][idx_plot[val]:][date_idx[0][-1]].strftime('%y/%m'))
mislabels = [dates_labels[leaders[0][i]][0] + ', ' + dates_labels[leaders[0][i]][1] for i in range(6)]
yuca = sch.dendrogram(linkages['ward'][val], truncate_mode='lastp', ax=ax[k], leaf_label_func=llf, p=6, show_contracted=False, show_leaf_counts=False,
leaf_rotation=0, no_labels=False, orientation = 'right' )
# ax[k].set_xticklabels(mislabels, fontsize=10, rotation=90)
ax[k].set_yticklabels(mislabels, fontsize=10, rotation=0)
ax[k].set_title(val)
plt.tight_layout()
plt.show()

Resources