cross sum operation in Haskell - haskell

I need to determine a recursive function crosssum :: Int -> Int in Haskell to calculate the cross sum of positive numbers. I am not allowed to use any functions from the hierarchical library besides (:), (>), (++), (<), (>=), (<=), div, mod, not (&&), max, min, etc.
crosssum :: Int -> Int
cross sum x = if x > 0
then x `mod` 10
+ x `div` 10 + crosssum x
else 0
so whenever I fill in e.g. crosssum 12 it says 'thread killed'. I do not understand how to get this right. I would appreciate any ideas. Thx

One of the problems with your code is that x is not reduced (or changed somehow) when it's passed as an argument to the recursive call of crosssum. That's why your program never stops.
The modified code:
crosssum :: Int -> Int
crosssum x = if x > 0
then x `mod` 10 + crosssum (x `div` 10)
else 0
is going to have the following logic
crosssum 12 = 2 + (crosssum 1) = 2 + (1 + (crosssum 0)) = 2 + 1 + 0
By the way, Haskell will help you to avoid if condition by using pattern-matching to receive more readable code:
crosssum :: Int -> Int
crosssum 0 = 0
crosssum x =
(mod x 10) + (crosssum (div x 10))

divMod in Prelude is very handy, too. It's one operation for both div and mod, In fact for all 2 digit numbers dm n = sum.sequence [fst,snd] $ divMod n 10
cs 0 = 0; cs n = m+ cs d where (d,m) = divMod n 10
cs will do any size number.

Related

How to code a function in Haskell which takes every other digit from an Int and adds it to a result Int?

I want to create a function as mentioned in the title. The specific is that it adds the digits in reversed order, you can see that in the test cases: 12 -> 1; 852369 -> 628; 1714 -> 11; 12345 -> 42; 891 -> 9; 448575 -> 784; 4214 -> 14
The main idea is that when the number is bigger than 99 it enters the helper function which has i - indicator if the the digit is on an even position, and res which stores the result. Helper begins to cycle n as it checks whether or not the current digit is on even position and adds it to the result.
So far I've tried the following code:
everyOther :: Int -> Int
everyOther n
| n < 10 = error "n must be bigger than 10 or equal"
| n < 100 = div n 10
| otherwise = helper n 0 0
where
helper :: Int -> Int -> Int -> Int
helper n i res
| n < 100 = res
| i == 1 = helper (div n 10) (i - 1) (res + (mod n 10)*10)
| otherwise = helper (div n 10) i res
Any help would be appreciated!
You can obtain the one but last digit of x with mod (div x 10) 10. You can use this with an accumulator that accumulates the value by each time multiplying with 10, so:
everyOther :: Int -> Int
everyOther = go 0
where go a v
| v < 10 = a
| otherwise = go (10*a + mod (div v 10) 10) (div v 100)
If v is thus less than 10, we can return the accumulator, since there is no "other digit" anymore. If that is not the case, we multiply a with 10, and add mod (div v 10) 10 to add the other digit to it, and recurse with the value divided by 100 to move it two places to the right.
We can improve this, as #Daniel Wagner says, by making use of quotRem :: Integral a => a -> a -> (a, a):
everyOther :: Int -> Int
everyOther = go 0
where go a v
| v < 10 = a
| otherwise = let (q, r) = v `quotRem` 100 in go (10*a + r `quot` 10) q
here we thus work with the remainder of a division by 100, and this thus avoids an extra modulo.

How do I get the sums of digits of the negative large number in Haskell?

sumOfDigitsPosNeg x =
if x == 0 then 0
else if x < 0 then sumOfDigitsPosNeg ((-1)*x `div` 10) + mod ((-1)*x) 10
else sumOfDigitsPosNeg (x `div` 10) + mod x 10
I've tried with these code, but if the input is more than one digit, the output is wrong. I'm just confused how to convert the negative numbers into positive. How do I approach this problem?
Using abs this is quite easy. We just operate on the absolute value of the number input.
sumDigits :: Integral t => t -> t
sumDigits 0 = 0
sumDigits n = a `mod` 10 + sumDigits (a `div` 10)
where a = abs n
You can work with a helper go function that will only retrieve the absolute value. We thus call go with the abs :: Num a => a -> a of the item:
sumOfDigitsPosNeg :: Integral a => a -> a
sumOfDigitsPosNeg = go . abs
where go 0 = 0
go n = r + go q
where (q, r) = quotRem n 10

What's wrong with my Fibonacci implementation?

I'm trying to transform my recursive Fibonacci function into an iterative solution. I tried the following:
fib_itt :: Int -> Int
fib_itt x = fib_itt' x 0
where
fib_itt' 0 y = 0
fib_itt' 1 y = y + 1
fib_itt' x y = fib_itt' (x-1) (y + ((x - 1) + (x - 2)))
I want to save the result into variable y and return it when the x y matches with 1 y, but it doesn't work as expected. For fib_itt 0 and fib_itt 1, it works correctly, but for n > 1, it doesn't work. For example, fib_rek 2 returns 1 and fib_rek 3 returns 2.
Your algorithm is wrong: in y + (x-1) + (x-2) you only add up consecutive numbers - not the numbers in the fib.series.
It seems like you tried some kind of pair-approach (I think) - and yes it's a good idea and can be done like this:
fib :: Int -> Int
fib k = snd $ fibIt k (0, 1)
fibIt :: Int -> (Int, Int) -> (Int, Int)
fibIt 0 x = x
fibIt k (n,n') = fibIt (k-1) (n',n+n')
as you can see: this passes the two needed parts (the last and second-to-last number) around as a pair of numbers and keeps track of the iteration with k.
Then it just gives back the second part of this tuple in fib (if you use the first you will get 0,1,1,2,3,... but of course you can adjust the initial tuple as well if you like (fib k = fst $ fibIt k (1, 1)).
by the way this idea directly leeds to this nice definition of the fib.sequence if you factor the iteration out to iterate ;)
fibs :: [Int]
fibs = map fst $ iterate next (1,1)
where
next (n,n') = (n',n+n')
fib :: Int -> Int
fib k = fibs !! k

Haskell reverse Integer with recursion

I want to reverse an Integer in Haskell with recursion. I have a small issue.
Here is the code :
reverseInt :: Integer -> Integer
reverseInt n
| n>0 = (mod n 10)*10 + reverseInt(div n 10)
| otherwise = 0
Example 345
I use as input 345 and I want to output 543
In my program it will do....
reverseInt 345
345>0
mod 345 10 -> 5
reverseInt 34
34
34>0
mod 34 10 -> 4
reverseInt 3
3>0
mod 3 10 -> 3
reverseInt 0
0=0 (ends)
And at the end it returns the sum of them... 5+4+3 = 12.
So I want each time before it sums them, to multiple the sum * 10. So it will go...
5
5*10 + 4
54*10 + 3
543
Here's a relatively simple one:
reverseInt :: Int -> Int
reverseInt 0 = 0
reverseInt n = firstDigit + 10 * (reverseInt $ n - firstDigit * 10^place)
where
n' = fromIntegral n
place = (floor . logBase 10) n'
firstDigit = n `div` 10^place
Basically,
You take the logBase 10 of your input integer, to give you in what place it is (10s, 100s, 1000s...)
Because the previous calculation gives you a floating point number, of which we do not need the decimals, we use the floor function to truncate everything after the decimal.
We determine the first digit of the number by doing n 'div' 10^place. For example, if we had 543, we'd find place to be 2, so firstDigit = 543/100 = 5 (integer division)
We use this value, and add it to 10 * the reverse of the 'rest' of the integer, in this case, 43.
Edit: Perhaps an even more concise and understandable version might be:
reverseInt :: Int -> Int
reverseInt 0 = 0
reverseInt n = mod n 10 * 10^place + reverseInt (div n 10)
where
n' = fromIntegral n
place = (floor . logBase 10) n'
This time, instead of recursing through the first digit, we're recursing through the last one and using place to give it the right number of zeroes.
reverseInt :: Integer -> Integer
reverseInt n = snd $ rev n
where
rev x
| x>0 = let (a,b) = rev(div x 10)
in ((a*10), (mod x 10)*a + b)
| otherwise = (1,0)
Explanation left to reader :)
I don't know convenient way to found how many times you should multiply (mod n 10) on 10 in your 3rd line. I like solution with unfoldr more:
import Data.List
listify = unfoldr (\ x -> case x of
_ | x <= 0 -> Nothing
_ -> Just(mod x 10, div x 10) )
reverse_n n = foldl (\ acc x -> acc*10+x) 0 (listify n)
In listify function we generate list of numbers from integer in reverse order and after that we build result simple folding a list.
Or just convert it to a string, reverse it and convert it back to an integer:
reverseInt :: Integer -> Integer
reverseInt = read . reverse . show
More (not necessarily recursion based) answers for great good!
reverseInt 0 = 0
reverseInt x = foldl (\x y -> 10*x + y) 0 $ numToList x
where
numToList x = if x == 0 then [] else (x `rem` 10) : numToList (x `div` 10)
This is basically the concatenation of two functions : numToList (convert a given integer to a list 123 -> [1,2,3]) and listToNum (do the opposite).
The numToList function works by repeatedly getting the lowest unit of the number (using rem, Haskell's remainder function), and then chops it off (using div, Haskell's integer division function). Once the number is 0, the empty list is returned and the result concatenates into the final list. Keep in mind that this list is in reverse order!
The listToNum function (not seen) is quite a sexy piece of code:
foldl (\x y -> 10*x + y) 0 xs
This starts from the left and moves to the right, multiplying the current value at each step by 10 and then adding the next number to it.
I know the answer has already been given, but it's always nice to see alternative solutions :)
The first function is recursive to convert the integer to a list. It was originally reversing but the re-conversion function reversed easier so I took it out of the first. The functions can be run separately. The first outputs a tuple pair. The second takes a tuple pair. The second is not recursive nor did it need to be.
di 0 ls = (ls,sum ls); di n ls = di nn $ d:ls where (nn,d) = divMod n 10
di 3456789 []
([3,4,5,6,7,8,9],42)
rec (ls,n) = (sum [y*(10^x)|(x,y) <- zip [0..] ls ],n)
Run both as
rec $ di 3456789 []
(9876543,42)

Mod Haskell Homework

My homework was to provide a function that computes 'x^y mod n' -for any n < (sqrt maxint32)
So I started by writing doing this:
modPow :: Int -> Int -> Int -> Int
modPow x y n = (x `mod` n) ^ (y `mod` n) `mod` n
Which seemed to work fine, for any number of n, although my next homework question involved using x^n mod n = x (Camichael numbers) and I could never get modPow to work.
So I made another modPow using pseudocode for mod exponentiation, -from wikipedia:
modPow2 :: Int -> Int -> Int -> Int
modPow2 x y n
= loopmod 1 1
where
loopmod count total = if count > y
then total
else loopmod (count+1) ((total*x) `mod` n)
Which now correctly produces the right answer for my next question, (x^n mod n = x) -for checking for Camichael numbers.
ALTHOUGH, modPow2 does not work for big numbers of 'y' (STACK-OVERFLOW!!)
How could I adjust modPow2 so it no longer gets a stackoverflow in the cases where y > 10,000 (but still less than sqrt of maxint 32 -which is around 46,000)
Or is there a fix on my original modPow so it works with x^n mod n = x? (I always do 560 561 561 as inputs and it gives me back 1 not 560 (561 is a carmichael number so should give 560 back)
Thanks alot.
Your formula for modPow is wrong, you can't just use y mod n as the exponent, it will lead to wrong results. For example:
Prelude> 2^10
1024
Prelude> 2^10 `mod` 10
4
Prelude> 2^(10 `mod` 10) `mod` 10
1
For a better modPow function you could use that x2n+1 = x2n ⋅ x and x2n = xn ⋅ xn and that for multiplication you actually can simply use the mod of the factors.
Where did you get your formula for modPow from?
(x ^ y) `mod` n = ((x `mod` n) ^ (y `mod` φ n)) `mod` n where φ is Euler's totient function.
This is probably because the argument total is computed lazily.
If you use GHC, you can make loopmod strict in total by placing a ! in frontof the argument, i.e.
loopmod count !total = ...
Another way would be to force evaluation of total like so: Replace the last line with
else if total == 0 then 0 else loopmod (count+1) ((total*x) `mod` n)
This does not change semantics (because 0*xis 0 anyway, so the reminder must be 0 also) and it forces hugs to evaluate total in every recursion.
If you are looking for implementation ( a^d mod n ) then
powM::Integer->Integer->Integer->Integer
powM a d n
| d == 0 = 1
| d == 1 = mod a n
| otherwise = mod q n where
p = powM ( mod ( a^2 ) n ) ( shiftR d 1 ) n
q = if (.&.) d 1 == 1 then mod ( a * p ) n else p

Resources