I have two 3D points (x,y,z), namely A and B and a bunch of other 3D points. Point A is at (0,0,0).
I would like to set point B to (0,0,0) so that all other points including A and B are translated and rotated in a way that is appropriate (so that A is no longer at (0,0,0)).
I know that there are some translations and rotations involved, but nothing more than that.
UPGRADE:
Point B is also constrained by three vectors: x', y', z' that represent x, y, and z axis of B's coordinate system. I think these should be somehow considered for the rotation part.
As you have given two points, one (A) at the origin and one (B) somewhere else, and you want to shift (translate) B to the origin, I don't see the necessity for any rotation.
If you don't have any other contraints, just shift all coordinates by the initial coordinates of B.
You can construct a transformation matrix as given, e.g., https://en.wikipedia.org/wiki/Transformation_matrix#Affine_transformations for 2D, but if you simply translate, R' = R + T, where R' is the vector after transformation, R the vector before and T the translation vector.
For more general transformations including rotations, you have to specify the rotation angle and axis. Then, you can come up with more general transformation, see above link.
Related
I have a path output as shown in the image below, in a coordinate system 1 wherein the start point and the end point are (40,40) and (10,20) respectively.
I want to scale this path to a new coordinate system (coordinate system 2) with a known start and end point, the path has to scale and adjust between the new points.
I believe Affine transforms might help / linear algebra.
How do I achieve this ? and will this be accurate or will it distort ?
To find appropriate affine tranformation (there are many ways to transform two points into two another ones, but we choose the simplest way), you can apply these elementary steps:
Shift coordinates by (-startx, -starty)
Scale along X-axis with coefficient (newendx-newstartx)/(endx-startx) (here -80/3)
Scale along Y-axis with coefficient (newendy-newstarty)/(endy-starty) (here -35)
Shift coordinates by (newstartx, newstarty)
Resulting affine tranformation is product of these four matrices
Using Wolfram alpha to get matrix
M == {{c, 0, 0},
{0, d, 0},
{a*c + e, b*d + f, 1}}
where a,b,c,d,e,f are values from decription above (a = -startx and so on)
Now transform coordinates with multiplication of point coordinates and matrix M
(x, y, 1) * M = (newx, newy, 1)
I am working on some shaders, and I need to transform normals.
I read in few tutorials the way you transform normals is you multiply them with the transpose of the inverse of the modelview matrix. But I can't find explanation of why is that so, and what is the logic behind that?
It flows from the definition of a normal.
Suppose you have the normal, N, and a vector, V, a tangent vector at the same position on the object as the normal. Then by definition N·V = 0.
Tangent vectors run in the same direction as the surface of an object. So if your surface is planar then the tangent is the difference between two identifiable points on the object. So if V = Q - R where Q and R are points on the surface then if you transform the object by B:
V' = BQ - BR
= B(Q - R)
= BV
The same logic applies for non-planar surfaces by considering limits.
In this case suppose you intend to transform the model by the matrix B. So B will be applied to the geometry. Then to figure out what to do to the normals you need to solve for the matrix, A so that:
(AN)·(BV) = 0
Turning that into a row versus column thing to eliminate the explicit dot product:
[tranpose(AN)](BV) = 0
Pull the transpose outside, eliminate the brackets:
transpose(N)*transpose(A)*B*V = 0
So that's "the transpose of the normal" [product with] "the transpose of the known transformation matrix" [product with] "the transformation we're solving for" [product with] "the vector on the surface of the model" = 0
But we started by stating that transpose(N)*V = 0, since that's the same as saying that N·V = 0. So to satisfy our constraints we need the middle part of the expression — transpose(A)*B — to go away.
Hence we can conclude that:
transpose(A)*B = identity
=> transpose(A) = identity*inverse(B)
=> transpose(A) = inverse(B)
=> A = transpose(inverse(B))
My favorite proof is below where N is the normal and V is a tangent vector. Since they are perpendicular their dot product is zero. M is any 3x3 invertible transformation (M-1 * M = I). N' and V' are the vectors transformed by M.
To get some intuition, consider the shear transformation below.
Note that this does not apply to tangent vectors.
Take a look at this tutorial:
https://paroj.github.io/gltut/Illumination/Tut09%20Normal%20Transformation.html
You can imagine that when the surface of a sphere stretches (so the sphere is scaled along one axis or something similar) the normals of that surface will all 'bend' towards each other. It turns out you need to invert the scale applied to the normals to achieve this. This is the same as transforming with the Inverse Transpose Matrix. The link above shows how to derive the inverse transpose matrix from this.
Also note that when the scale is uniform, you can simply pass the original matrix as normal matrix. Imagine the same sphere being scaled uniformly along all axes, the surface will not stretch or bend, nor will the normals.
If the model matrix is made of translation, rotation and scale, you don't need to do inverse transpose to calculate normal matrix. Simply divide the normal by squared scale and multiply by model matrix and we are done. You can extend that to any matrix with perpendicular axes, just calculate squared scale for each axes of the matrix you are using instead.
I wrote the details in my blog: https://lxjk.github.io/2017/10/01/Stop-Using-Normal-Matrix.html
Don't understand why you just don't zero out the 4th element of the direction vector before multiplying with the model matrix. No inverse or transpose needed. Think of the direction vector as the difference between two points. Move the two points with the rest of the model - they are still in the same relative position to the model. Take the difference between the two points to get the new direction, and the 4th element, cancels out to zero. Lot cheaper.
Ive got 2 points in 3d space (with the same y coordinate). Ill call them c and m. I want to find the corner points (marked in the pic as p1-p4) of a square with the width w. The important thing is, that the square is not parallel to the x-axis. If it were, (for p1 as an example) I could just do:
p1.x = m.x + w / 2
p1.y = m.y + w / 2
p1.z = m.z
How would I do the same with a angled square? These are all the given points:
m; c
and lenghts:
w; d
There's multiple ways to do it, but here's one way.
If the two points are guaranteed to have the same y value, you should be able to do it as follows.
Take 'm - c' and call that u. Normalize u. Then take the cross product of u and the y axis to get v, a vector parallel to the xz plane that's perpendicular to u. (This can be optimized, but that's unlikely to be important.) Then take the cross product of u and v to get a third vector, w. Note that you can use 'm - c' or 'c - m', or use different orders for the cross-product arguments, and it'll still work, but the resulting vectors may point in different directions (but only opposite directions). You can also normalize at different points in the process and get the same results at the end.
Once you have m, v, and w, you can use some basic vector math to compute the corners.
[Edit: I see you have a variable named 'w', so I should clarify that the 'w' in my example is a different 'w' than yours. As for your 'w' and 'd', those would factor in in the vector math I mentioned at the end.]
In 3D rendering (or geometry for that matter), in the rasterization algorithm, when you project the vertices of a triangle onto the screen and then find if a pixel overlaps the 2D triangle, you often need to find the depth or the z-coordinate of the triangle that the pixel overlaps. Generally, the method consists of computing the barycentric coordinates of the pixel in the 2D "projected" image of the triangle, and then use these coordinates to interpolate the triangle original vertices z-coordinates (before the vertices got projected).
Now it's written in all text books that you can't interpolate the vertices coordinates of the vertices directly but that you need to do this instead:
(sorry can't get Latex to work?)
1/z = w0 * 1/v0.z + w1 * 1/v1.z + w2 * 1/v2.z
Where w0, w1, and w2 are the barycentric coordinates of the "pixel" on the triangle.
Now, what I am looking after, are two things:
what would be the formal proof to show that interpolating z doesn't work?
what would be the formal proof to show that 1/z does the right thing?
To show this is not home work ;-) and that I have made some work on my own, I have found the following explanation for question 2.
Basically a triangle can be defined by a plane equation. Thus you can write:
Ax + By + Cz = D.
Then you isolate z to get z = (D - Ax - By)/C
Then you divide this formula by z as you would with a perspective divide and if you develop, regroup, etc. you get:
1/z = C/D + A/Dx/z + B/Dy/z.
Then we name C'=C/D B'=B/D and A'=A/D you get:
1/z = A'x/z + B'y/z + C'
It says that x/z and y/z are just the coordinates of the points on the triangles once projected on the screen and that the equation on the right is an "affine" function therefore 1/z is a linear function???
That doesn't seem like a demonstration to me? Or maybe it's the right idea, but can't really say how you can tell by just looking at the equation that this is an affine function. If you multiply all the terms you just get:
A'x + B'y + C'z = 1.
Which is just basically our original equations (just need to replace A' B' and C' with the proper term).
Not sure what you are trying to ask here, but if you look at:
1/z = A'x/z + B'y/z + C'
and rewrite it as:
1/z = A'u + B'v + C'
where (u,v) are screen coordinates of the triangle after perspective projection, you can see that the depth (z) of a point on the triangle is not linearly related to (u,v) but 1/depth is and that is what the textbooks are trying to teach you.
I have a shape made out of several triangles which is positioned somewhere in world space with scale, rotate, translate. I also have a plane on which I would like to project (orthogonal) the shape.
I could multiply every vertex of every triangle in the shape with the objects transformation matrix to find out where it is located in world coordinates, and then project this point onto the plane.
But I don't need to draw the projection, and instead I would like to transform the plane with the inverse transformation matrix of the shape, and then project all the vertices onto the (inverse transformed) plane. Since it only requires me to transform the plane once and not every vertex.
My plane has a normal (xyz) and a distance (d). How do I multiply it with a 4x4 transformation matrix so that it turns out ok?
Can you create a vec4 as xyzd and multiply that? Or maybe create a vector xyz1 and then what to do with d?
You need to convert your plane to a different representation. One where N is the normal, and O is any point on the plane. The normal you already know, it's your (xyz). A point on the plane is also easy, it's your normal N times your distance d.
Transform O by the 4x4 matrix in the normal way, this becomes your new O. You will need a Vector4 to multiply with a 4x4 matrix, set the W component to 1 (x, y, z, 1).
Also transform N by the 4x4 matrix, but set the W component to 0 (x, y, z, 0). Setting the W component to 0 means that your normals won't get translated. If your matrix is composed of more that just translating and rotating, then this step isn't so simple. Instead of multiplying by your transformation matrix, you have to multiply by the transpose of the inverse of the matrix i.e. Matrix4.Transpose(Matrix4.Invert(Transform)), there's a good explanation on why here.
You now have a new normal vector N and a new position vector O. However I suppose you want it in xyzd form again? No problem. As before, xyz is your normal N all that's left is to calculate d. d is the distance of the plane from the origin, along the normal vector. Hence, it is simply the dot product of O and N.
There you have it! If you tell me what language you're doing this in, I'd happily type it up in code as well.
EDIT, In pseudocode:
The plane is vector3 xyz and number d, the matrix is a matrix4x4 M
vector4 O = (xyz * d, 1)
vector4 N = (xyz, 0)
O = M * O
N = transpose(invert(M)) * N
xyz = N.xyz
d = dot(O.xyz, N.xyz)
xyz and d represent the new plane
This question is a bit old but I would like to correct the accepted answer.
You do not need to convert your plane representation.
Any point lies on the plane if
It can be written as dot product :
You are looking for the plane transformed by your 4x4 matrix .
For the same reason, you must have
So and with some arrangements
TLDR : if p=(a,b,c,d), p' = transpose(inverse(M))*p
Notation:
n is a normal represented as a (1x3) row-vector
n' is the transformed normal of n according to transform matrix T
(n|d) is a plane represented as a (1x4) row-vector (with n the plane's normal and d the plane's distance to the origin)
(n'|d') is the transformed plane of (n|d) according to transform matrix T
T is a (4x4) (affine) column-major transformation matrix (i.e. transforming a column-vector t is defined as t' = T t).
Transforming a normal n:
n' = n adj(T)
Transforming a plane (n|d):
(n'|d') = (n|d) adj(T)
Here, adj is the adjugate of a matrix which is defined as follows in terms of the inverse and determinant of a matrix:
T^-1 = adj(T)/det(T)
Note:
The adjugate is generally not equal to the inverse of a transformation matrix T. If T includes a reflection, det(T) = -1, reversing the winding order!
Re-normalizing n' is mathematically not required (but maybe numerically depending on the implementation) since scaling is taken care off by the determinant. Thanks to Adrian Leonhard.
You can directly transform the plane without first decomposing and recomposing a plane (normal and point).