Scipy.integrate gives odd results; are there best practices? - python-3.x

I am still struggling with scipy.integrate.quad.
Sparing all the details, I have an integral to evaluate. The function is of the form of the integral of a product of functions in x, like so:
Z(k) = f(x) g(k/x) / abs(x)
I know for certain the range of integration is between tow positive numbers. Oddly, when I pick a wide range that I know must contain all values of x that are positive - like integrating from 1 to 10,000,000 - it intgrates fast and gives an answer which looks right. But when I fingure out the exact limits - which I know sice f(x) is zero over a lot of the real line - and use those, I get another answer that is different. They aren't very different, though I know the second is more accurate.
After much fiddling I got it to work OK, but then needed to add in an exopnentiation - I was at least getting a 'smooth' answer for the computed function of z. I had this working in an OK way before I added in the exponentiation (which is needed), but now the function that gets generated (z) becomes more and more oscillatory and peculiar.
Any idea what is happening here? I know this code comes from an old Fortran library, so there must be some known issues, but I can't find references.
Here is the core code:
def normal(x, mu, sigma) :
return (1.0/((2.0*3.14159*sigma**2)**0.5)*exp(-(x-
mu)**2/(2*sigma**2)))
def integrand(x, z, mu, sigma, f) :
return np.exp(normal(z/x, mu, sigma)) * getP(x, f._x, f._y) / abs(x)
for _z in range (int(z_min), int(z_max) + 1, 1000):
z.append(_z)
pResult = quad(integrand, lb, ub,
args=(float(_z), MU-SIGMA**2/2, SIGMA, X),
points = [100000.0],
epsabs = 1, epsrel = .01) # drop error estimate of tuple
p.append(pResult[0]) # drop error estimate of tuple
By the way, getP() returns a linearly interpolated, piecewise continuous,but non-smooth function to give the integrator values that smoothly fit between the discrete 'buckets' of the histogram.

As with many numerical methods, it can be very sensitive to asymptotes, zeros, etc. The only choice is to keep giving it 'hints' if it will accept them.

Related

Unexpected solution using JiTCDDE

I'm trying to investigate the behavior of the following Delayed Differential Equation using Python:
y''(t) = -y(t)/τ^2 - 2y'(t)/τ - Nd*f(y(t-T))/τ^2,
where f is a cut-off function which is essentially equal to the identity when the absolute value of its argument is between 1 and 10 and otherwise is equal to 0 (see figure 1), and Nd, τ and T are constants.
For this I'm using the package JiTCDDE. This provides a reasonable solution to the above equation. Nevertheless, when I try to add a noise on the right hand side of the equation, I obtain a solution which stabilize to a non-zero constant after a few oscillations. This is not a mathematical solution of the equation (the only possible constant solution being equal to zero). I don't understand why this problem arises and if it is possible to solve it.
I reproduce my code below. Here, for the sake of simplicity, I substituted the noise with an high-frequency cosine, which is introduced in the system of equation as the initial condition for a dummy variable (the cosine could have been introduced directly in the system, but for a general noise this doesn't seem possible). To simplify further the problem, I removed also the term involving the f function, as the problem arises also without it. Figure 2 shows the plot of the function given by the code.
from jitcdde import jitcdde, y, t
import numpy as np
from matplotlib import pyplot as plt
import math
from chspy import CubicHermiteSpline
# Definition of function f:
def functionf(x):
return x/4*(1+symengine.erf(x**2-Bmin**2))*(1-symengine.erf(x**2-Bmax**2))
#parameters:
τ = 42.9
T = 35.33
Nd = 8.32
# Definition of the initial conditions:
dt = .01 # Time step.
totT = 10000. # Total time.
Nmax = int(totT / dt) # Number of time steps.
Vt = np.linspace(0., totT, Nmax) # Vector of times.
# Definition of the "noise"
X = np.zeros(Nmax)
for i in range(Nmax):
X[i]=math.cos(Vt[i])
past=CubicHermiteSpline(n=3)
for time, datum in zip(Vt,X):
regular_past = [10.,0.]
past.append((
time-totT,
np.hstack((regular_past,datum)),
np.zeros(3)
))
noise= lambda t: y(2,t-totT)
# Integration of the DDE
g = [
y(1),
-y(0)/τ**2-2*y(1)/τ+0.008*noise(t)
]
g.append(0)
DDE = jitcdde(g)
DDE.add_past_points(past)
DDE.adjust_diff()
data = []
for time in np.arange(DDE.t, DDE.t+totT, 1):
data.append( DDE.integrate(time)[0] )
plt.plot(data)
plt.show()
Incidentally, I noticed that even without noise, the solution seems to be discontinuous at the point zero (y is set to be equal to zero for negative times), and I don't understand why.
As the comments unveiled, your problem eventually boiled down to this:
step_on_discontinuities assumes delays that are small with respect to the integration time and performs steps that are placed on those times where the delayed components points to the integration start (0 in your case). This way initial discontinuities are handled.
However, implementing an input with a delayed dummy variable introduces a large delay into the system, totT in your case.
The respective step for step_on_discontinuities would be at totT itself, i.e., after the desired integration time.
Thus when you reach for time in np.arange(DDE.t, DDE.t+totT, 1): in your code, DDE.t is totT.
Therefore you have made a big step before you actually start integrating and observing which may seem like a discontinuity and lead to weird results, in particular you do not see the effect of your input, because it has already “ended” at this point.
To avoid this, use adjust_diff or integrate_blindly instead of step_on_discontinuities.

Bachelier Normal Implied Vol Python Calculation (Help) Jekel

Writing a python script to calc Implied Normal Vol ; in line with Jekel article (Industry Standard).
https://jaeckel.000webhostapp.com/ImpliedNormalVolatility.pdf
They say they are using a Generalized Incomplete Gamma Function Inverse.
For a call:
F(x)=v/(K - F) -> find x that makes this true
Where F is Inverse Incomplete Gamma Function
And x = (K - F)/(T*sqrt(T) ; v is the value of a call
for that x, IV is =(K-F)/x*sqrt(T)
Example I am working with:
F=40
X=38
T=100/365
v=5.25
Vol= 20%
Using the equations I should be able to backout Vol of 20%
Scipy has upper and lower Incomplete Gamma Function Inverse in their special functions.
Lower: scipy.special.gammaincinv(a, y) : {a must be positive param}
Upper: scipy.special.gammainccinv(a, y) : {a must be positive param}
Implementation:
SIG= sympy.symbols('SIG')
F=40
T=100/365
K=38
def Objective(sig):
SIG=sig
return(special.gammaincinv(.5,((F-K)**2)/(2*T*SIG**2))+special.gammainccinv(.5,((F-K)**2)/(2*T*SIG**2))+5.25/(K-F))
x=optimize.brentq(Objective, -20.00,20.00, args=(), xtol=1.48e-8, rtol=1.48e-8, maxiter=1000, full_output=True)
IV=(K-F)/x*T**.5
Print(IV)
I know I am wrong, but Where am I going wrong / how do I fix it and use what I read in the article ?
Did you also post this on the Quantitative Finance Stack Exchange? You may get a better response there.
This is not my field, but it looks like your main problem is that brentq requires the passed Objective function to return values with opposite signs when passed the -20 and 20 arguments. However, this will not end up happening because according to the scipy docs, gammaincinv and gammainccinv always return a value between 0 and infinity.
I'm not sure how to fix this, unfortunately. Did you try implementing the analytic solution (rather than iterative root finding) in the second part of the paper?

Which is the error of a value corresponding to the maximum of a function?

This is my problem:
The first input is the observed data of MUSE, which is an astronomical instrument provides cubes, i.e. an image for each wavelength with a certain range. This means that, taken all the wavelengths corresponding to the pixel i,j, I can extract the spectrum for this pixel. Since these images are observed, for each pixel I have an error.
The second input is a spectrum template, i.e. a model of a spectrum. This template is assumed to be without error. I map this spectra at various redshift (this means multiply the wavelenghts for a factor 1+z, where z belong to a certain range).
The core of my code is the cross-correlation between the cube, i.e. the spectra extracted from each pixel, and the template mapped at different redshift. The result is a cross-correlation function for each pixel for each z, let's call this computed function as f(z). Taking, for each pixel, the argmax of f(z), I get the best redshift.
This is a common and widely-used process, indeed, it actually works well.
My question:
Since my input, i.e. the MUSE cube, has an error, I have propagated this error through the cross-correlation, obtaining an error on f(z), i.e. each f_i has a error sigma_i. So, how can I compute the error on z_max, which is the value of z corresponding to the maximum of f?
Maybe a solution could be the implementation of bootstrap method: I can extract, within the error of f, a certain number of function, for each of them I computed the argamx, so i can have an idea about the scatter of z_max.
By the way, I'm using python (3.x) and tensorflow has been used to compute the cross-correlation function.
Thanks!
EDIT
Following #TF_Support suggestion I'm trying to add some code and some figures to better understand the problem. But, before this, maybe it's better a little of math.
With this expression I had computed the cross-correlation:
where S is the spectra, T is the template and N is the normalization coefficient. Since S has an error, I had propagated these errors through the previous relation founding:
where SST_k is the the sum of the template squared and sigma_ij is the error on on S_ij (actually, I should have written sigma_S_ij).
The follow function (implemented with tensorflow 2.1) makes the cross-correlation between one template and the spectra of batch pixels, and computes the error on the cross-correlation function:
#tf.function
def make_xcorr_err1(T, S, sigma_S):
sum_spectra_sq = tf.reduce_sum(tf.square(S), 1) #shape (batch,)
sum_template_sq = tf.reduce_sum(tf.square(T), 0) #shape (Nz, )
norm = tf.sqrt(tf.reshape(sum_spectra_sq, (-1,1))*tf.reshape(sum_template_sq, (1,-1))) #shape (batch, Nz)
xcorr = tf.matmul(S, T, transpose_a = False, transpose_b= False)/norm
foo1 = tf.matmul(sigma_S**2, T**2, transpose_a = False, transpose_b= False)/norm**2
foo2 = xcorr**2 * tf.reshape(sum_template_sq**2, (1,-1)) * tf.reshape(tf.reduce_sum((S*sigma_S)**2, 1), (-1,1))/norm**4
foo3 = - 2 * xcorr * tf.reshape(sum_template_sq, (1,-1)) * tf.matmul(S*(sigma_S)**2, T, transpose_a = False, transpose_b= False)/norm**3
sigma_xcorr = tf.sqrt(tf.maximum(foo1+foo2+foo3, 0.))
Maybe, in order to understand my problem, more important than code is an image representing an output. This is the cross-correlation function for a single pixel, in red the maximum value, let's call z_best, i.e. the best cross-correlated value. The figure also shows the 3 sigma errors (the grey limits are +3sigma -3sigma).
If i zoom-in near the peak, I get this:
As you can see the maximum (as any other value) oscillates within a certain range. I would like to find a way to map this fluctuations of maximum (or the fluctuations around the maximum, or the fluctuations of the whole function) to an error on the value corresponding the maximum, i.e. an error on z_best.

Numerical differentiation using Cauchy (CIF)

I am trying to create a module with a mathematical class for Taylor series, to have it easily accessible for other projects. Hence I wish to optimize it as far as I can.
For those who are not too familiar with Taylor series, it will be a necessity to be able to differentiate a function in a point many times. Given that the normal definition of the mathematical derivative of a function will require immense precision for higher order derivatives, I've decided to use Cauchy's integral formula instead. With a little bit of work, I've managed to rearrange the formula a little bit, as you can see on this picture: Rearranged formula. This provided me with much more accurate results on higher order derivatives than the traditional definition of the derivative. Here is the function i am currently using to differentiate a function in a point:
def myDerivative(f, x, dTheta, degree):
riemannSum = 0
theta = 0
while theta < 2*np.pi:
functionArgument = np.complex128(x + np.exp(1j*theta))
secondFactor = np.complex128(np.exp(-1j * degree * theta))
riemannSum += f(functionArgument) * secondFactor * dTheta
theta += dTheta
return factorial(degree)/(2*np.pi) * riemannSum.real
I've tested this function in my main function with a carefully thought out mathematical function which I know the derivatives of, namely f(x) = sin(x).
def main():
print(myDerivative(f, 0, 2*np.pi/(4*4096), 16))
pass
These derivatives seems to freak out at around the derivative of degree 16. I've also tried to play around with dTheta, but with no luck. I would like to have higher orders as well, but I fear I've run into some kind of machine precission.
My question is in it's simplest form: What can I do to improve this function in order to get higher order of my derivatives?
I seem to have come up with a solution to the problem. I did this by rearranging Cauchy's integral formula in a different way, by exploiting that the initial contour integral can be an arbitrarily large circle around the point of differentiation. Be aware that it is very important that the function is analytic in the complex plane for this to be valid.
New formula
Also this gives a new function for differentiation:
def myDerivative(f, x, dTheta, degree, contourRadius):
riemannSum = 0
theta = 0
while theta < 2*np.pi:
functionArgument = np.complex128(x + contourRadius*np.exp(1j*theta))
secondFactor = (1/contourRadius)**degree*np.complex128(np.exp(-1j * degree * theta))
riemannSum += f(functionArgument) * secondFactor * dTheta
theta += dTheta
return factorial(degree) * riemannSum.real / (2*np.pi)
This gives me a very accurate differentiation of high orders. For instance I am able to differentiate f(x)=e^x 50 times without a problem.
Well, since you are working with a discrete approximation of the derivative (via dTheta), sooner or later you must run into trouble. I'm surprised you were able to get at least 15 accurate derivatives -- good work! But to get derivatives of all orders, either you have to put a limit on what you're willing to accept and say it's good enough, or else compute the derivatives symbolically. Take a look at Sympy for that. Sympy probably has some functions for computing Taylor series too.

(Incremental)PCA's Eigenvectors are not transposed but should be?

When we posted a homework assignment about PCA we told the course participants to pick any way of calculating the eigenvectors they found. They found multiple ways: eig, eigh (our favorite was svd). In a later task we told them to use the PCAs from scikit-learn - and were surprised that the results differed a lot more than we expected.
I toyed around a bit and we posted an explanation to the participants that either solution was correct and probably just suffered from numerical instabilities in the algorithms. However, recently I picked that file up again during a discussion with a co-worker and we quickly figured out that there's an interesting subtle change to make to get all results to be almost equivalent: Transpose the eigenvectors obtained from the SVD (and thus from the PCAs).
A bit of code to show this:
def pca_eig(data):
"""Uses numpy.linalg.eig to calculate the PCA."""
data = data.T # data
val, vec = np.linalg.eig(data)
return val, vec
versus
def pca_svd(data):
"""Uses numpy.linalg.svd to calculate the PCA."""
u, s, v = np.linalg.svd(data)
return s ** 2, v
Does not yield the same result. Changing the return of pca_svd to s ** 2, v.T, however, works! It makes perfect sense following the definition by wikipedia: The SVD of X follows X=UΣWT where
the right singular vectors W of X are equivalent to the eigenvectors of XTX
So to get the eigenvectors we need to transposed the output v of np.linalg.eig(...).
Unless there is something else going on? Anyway, the PCA and IncrementalPCA both show wrong results (or eig is wrong? I mean, transposing that yields the same equality), and looking at the code for PCA reveals that they are doing it as I did it initially:
U, S, V = linalg.svd(X, full_matrices=False)
# flip eigenvectors' sign to enforce deterministic output
U, V = svd_flip(U, V)
components_ = V
I created a little gist demonstrating the differences (nbviewer), the first with PCA and IncPCA as they are (also no transposition of the SVD), the second with transposed eigenvectors:
Comparison without transposition of SVD/PCAs (normalized data)
Comparison with transposition of SVD/PCAs (normalized data)
As one can clearly see, in the upper image the results are not really great, while the lower image only differs in some signs, thus mirroring the results here and there.
Is this really wrong and a bug in scikit-learn? More likely I am using the math wrong – but what is right? Can you please help me?
If you look at the documentation, it's pretty clear from the shape that the eigenvectors are in the rows, not the columns.
The point of the sklearn PCA is that you can use the transform method to do the correct transformation.

Resources