I am new to multi-class text classification with BERT. I have been following a tutorial (https://towardsdatascience.com/multi-label-multi-class-text-classification-with-bert-transformer-and-keras-c6355eccb63a) for leaning purposes.
I am able to get the script below running up to calculating the confusion matrix. The classification report also does not work. I would be grateful if someone can help me. My apologies if this question has already been asked. I searched everywhere and could not find an answer.
The error is here: y_predicted = numpy.argmax(predicted_raw, axis = 1). The error message says "axis 1 is out of bounds for array of dimension 1" When I change axis to zero. The new error message is "Singleton array 0 cannot be considered a valid collection." I think what the axis=0 error says is that y_predicted is null. I double checked it with an if statement.
import pandas
import numpy
import re
import nltk
# for plotting
import matplotlib.pyplot as plt
import seaborn as sns
input_dataframe = pandas.read_csv('tutorial6.csv')
fig, ax = plt.subplots()
fig.suptitle("Product", fontsize=12)
input_dataframe["Product"].reset_index().groupby("Product").count().sort_values(by=
"index").plot(kind="barh", legend=False,
ax=ax).grid(axis='x')
plt.show()
def utils_preprocess_text(text, flg_stemm=False, flg_lemm=True, lst_stopwords=None):
## clean (convert to lowercase and remove punctuations and characters and then strip)
text = re.sub(r'[^\w\s]', '', str(text).lower().strip())
## Tokenize (convert from string to list)
lst_text = text.split()
## remove Stopwords
if lst_stopwords is not None:
lst_text = [word for word in lst_text if word not in
lst_stopwords]
## Stemming (remove -ing, -ly, ...)
if flg_stemm == True:
ps = nltk.stem.porter.PorterStemmer()
lst_text = [ps.stem(word) for word in lst_text]
## Lemmatisation (convert the word into root word)
if flg_lemm == True:
lem = nltk.stem.wordnet.WordNetLemmatizer()
lst_text = [lem.lemmatize(word) for word in lst_text]
## back to string from list
text = " ".join(lst_text)
return text
lst_stopwords = nltk.corpus.stopwords.words("english")
input_dataframe["text_clean"] = input_dataframe ["Consumer_Complaint"].apply(lambda x:
utils_preprocess_text(x, flg_stemm=False, flg_lemm=True,
lst_stopwords=lst_stopwords))
from tensorflow.keras.utils import to_categorical
possible_labels = input_dataframe.Product.unique()
label_dict = {}
for index, possible_label in enumerate(possible_labels):
label_dict[possible_label] = index
print(label_dict)
input_dataframe['label'] = input_dataframe.Product.replace(label_dict)
# Split into train and test - stratify over Issue
from sklearn.model_selection import train_test_split
data_train, data_test = train_test_split(input_dataframe, test_size = 0.2,stratify = input_dataframe[["label"]])
# Load Huggingface transformers
from transformers import TFBertModel, BertConfig, BertTokenizerFast
# Then what you need from tensorflow.keras
from tensorflow.keras.layers import Input, Dropout, Dense
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tensorflow.keras.callbacks import EarlyStopping
from tensorflow.keras.initializers import TruncatedNormal
from tensorflow.keras.losses import CategoricalCrossentropy
from tensorflow.keras.metrics import CategoricalAccuracy
from tensorflow.keras.utils import to_categorical
### --------- Setup BERT ---------- ###
# Name of the BERT model to use
model_name = 'bert-base-uncased'
# Max length of tokens
max_length = 100
# Load transformers config and set output_hidden_states to False
config = BertConfig.from_pretrained(model_name)
config.output_hidden_states = False
# Load BERT tokenizer
tokenizer = BertTokenizerFast.from_pretrained(pretrained_model_name_or_path = model_name, config = config)
# Load the Transformers BERT model
transformer_model = TFBertModel.from_pretrained(model_name, config = config)
### ------- Build the model ------- ###
# TF Keras documentation: https://www.tensorflow.org/api_docs/python/tf/keras/Model
# Load the MainLayer
bert = transformer_model.layers[0]
# Build your model input
input_ids = Input(shape=(max_length,), name='input_ids', dtype='int32')
inputs = {'input_ids': input_ids}
# Load the Transformers BERT model as a layer in a Keras model
bert_model = bert(inputs)[1]
dropout = Dropout(config.hidden_dropout_prob, name='pooled_output')
pooled_output = dropout(bert_model, training=False)
# Then build your model output
product = Dense(8, kernel_initializer=TruncatedNormal(stddev=config.initializer_range), name='product')(pooled_output)
outputs = {'product': product}
# And combine it all in a model object
model = Model(inputs=inputs, outputs=outputs, name='BERT_MultiLabel_MultiClass')
# Take a look at the model
model.summary()
# Set an optimizer
optimizer = Adam()
# Set loss and metrics
loss = {'product': CategoricalCrossentropy(from_logits = True)}
metric = {'product': CategoricalAccuracy('accuracy')}
# Compile the model
model.compile(
optimizer = optimizer,
loss = loss,
metrics = metric)
# Ready output data for the model
y_train = to_categorical(data_train['label'],8)
y_test = to_categorical(data_test['label'],8)
x_train = tokenizer(
text=data_train['Consumer_Complaint'].to_list(),
add_special_tokens=True,
max_length=max_length,
truncation=True,
padding=True,
return_tensors='tf',
return_token_type_ids = False,
return_attention_mask = False,
verbose = True)
x_test = tokenizer(
text=data_test['Consumer_Complaint'].to_list(),
add_special_tokens=True,
max_length=max_length,
truncation=True,
padding=True,
return_tensors='tf',
return_token_type_ids = False,
return_attention_mask = False,
verbose = True)
# Fit the model
history = model.fit(
x={'input_ids': x_train['input_ids']},
y={'product': y_train},
validation_split=0.2,
batch_size=64,
epochs=1)
### ----- Evaluate the model ------ ###
model_eval = model.evaluate(
x={'input_ids': x_test['input_ids']},
y={'product': y_test}
)
print("This is evaluation: ", model_eval)
accr = model.evaluate(x_test['input_ids'],y_test)
print('Test set\n Loss: {:0.3f}\n Accuracy: {:0.3f}'.format(accr[0],accr[1]))
from matplotlib import pyplot as plt
plt.title('Loss')
plt.plot(history.history['loss'], label='train')
plt.plot(history.history['val_loss'], label='test')
plt.legend()
plt.show();
# plot loss and accuracy
metrics = [k for k in history.history.keys() if ("loss" not in k) and ("val" not in k)]
fig, ax = plt.subplots(nrows=1, ncols=2, sharey=True)
ax[0].set(title="Training")
ax11 = ax[0].twinx()
ax[0].plot(history.history['loss'], color='black')
ax[0].set_xlabel('Epochs')
ax[0].set_ylabel('Loss', color='black')
for metric in metrics:
ax11.plot(history.history[metric], label=metric)
ax11.set_ylabel("Score", color='steelblue')
ax11.legend()
ax[1].set(title="Validation")
ax22 = ax[1].twinx()
ax[1].plot(history.history['val_loss'], color='black')
ax[1].set_xlabel('Epochs')
ax[1].set_ylabel('Loss', color='black')
for metric in metrics:
ax22.plot(history.history['val_'+metric], label=metric)
ax22.set_ylabel("Score", color="steelblue")
plt.show()
#Testing our model on the test data.
predicted_raw = model.predict({'input_ids':x_test['input_ids']})
print(type(predicted_raw))
predicted_raw=list(predicted_raw)
predicted_raw=numpy.array(predicted_raw)
y_predicted = numpy.argmax(predicted_raw, axis = 1)
y_true = data_test.label
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
confusionmatrix = confusion_matrix(y_predicted,y_true)
I am trying to get the confusion matrix and classification report working.
I am trying to solve one problem that resembles that of Fisher's irises classification. The problem is that I can train the model on my computer, but the given model has to predict class membership on a computer where it is impossible to install python and scikit learn. I want to understand how, having received the coefficients of the logistic regression model, I can predict the belonging to a certain class without using the predict method of the model.
Using the Fisher problem as an example, I do the following.
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import make_pipeline
from sklearn.metrics import accuracy_score, f1_score
# data preparation
iris = load_iris()
data = pd.DataFrame(data=np.hstack([iris.data, iris.target[:, np.newaxis]]),
columns=iris.feature_names + ['target'])
names = data.columns
# split data
X_train, X_test, y_train, y_test = train_test_split(data[names[:-1]], data[names[-1]], random_state=42)
# train model
cls = make_pipeline(
StandardScaler(),
LogisticRegression(C=2, random_state=42)
)
cls = cls.fit(X_train.to_numpy(), y_train)
preds_train = cls.predict(X_train)
# prediction
preds_test = cls.predict(X_test)
# scores
train_score = accuracy_score(preds_train, y_train), f1_score(preds_train, y_train, average='macro') # on train data
# train_score = (0.9642857142857143, 0.9653621232568601)
test_score = accuracy_score(preds_test, y_test), f1_score(preds_test, y_test, average='macro') # on test data
# test_score = (1.0, 1.0)
# model coefficients
cls[1].coef_, cls[1].intercept_
>>> (array([[-1.13948079, 1.30623841, -2.21496793, -2.05617771],
[ 0.66515676, -0.2541143 , -0.55819748, -0.86441227],
[ 0.47432404, -1.05212411, 2.77316541, 2.92058998]]),
array([-0.35860337, 2.43929019, -2.08068682]))
Now I have the coefficients of the model. And I want to use them to make predictions.
First, I make a prediction using the predict method for the first five observations on the test sample.
preds_test = cls.predict_proba(X_test)
preds_test[0:5]
>>>array([[5.66019001e-03, 9.18455687e-01, 7.58841233e-02],
[9.75854479e-01, 2.41455095e-02, 1.10881450e-08],
[1.18780156e-09, 6.53295166e-04, 9.99346704e-01],
[6.71574900e-03, 8.14174200e-01, 1.79110051e-01],
[6.98756622e-04, 8.09096425e-01, 1.90204818e-01]])
Then I manually calculate the predictions of the class probabilities for the observations using the coefficients of the model.
# define two functions for making predictions
def logit(x, w):
return np.dot(x, w)
# from here: https://stackoverflow.com/questions/34968722/how-to-implement-the-softmax-function-in-python
def softmax(z):
assert len(z.shape) == 2
s = np.max(z, axis=1)
s = s[:, np.newaxis] # necessary step to do broadcasting
e_x = np.exp(z - s)
div = np.sum(e_x, axis=1)
div = div[:, np.newaxis] # dito
return e_x / div
n, k = X_test.shape
X_ = np.hstack((np.ones((n, 1)), X_test)) # add column with 1 for intercept
weights = np.hstack((cls[1].intercept_[:, np.newaxis], cls[1].coef_)) # create weights matrix
results = softmax(logit(X_, weights.T)) # calculate probabilities
results[0:5]
>>>array([[3.67343725e-14, 4.63938438e-06, 9.99995361e-01],
[2.81976786e-05, 8.63083152e-01, 1.36888650e-01],
[1.24572182e-22, 5.47800683e-11, 1.00000000e+00],
[3.32990060e-14, 3.08352323e-06, 9.99996916e-01],
[2.66415118e-15, 1.78252465e-06, 9.99998217e-01]])
If you compare the two results obtained (preds_test[0:5] and results[0:5]), you can see that they do not coincide at all. Please explain me what I am doing wrong and how I can use the model's coefficients to calculate predictions without using the predict method.
I forgot that a scaler was applied. If you change the code a little, then the results are the same.
scaler = StandardScaler()
scaler.fit(X_train)
X_test_transf = scaler.transform(X_test)
def logit(x, w):
return np.dot(x, w)
def softmax(z):
assert len(z.shape) == 2
s = np.max(z, axis=1)
s = s[:, np.newaxis] # necessary step to do broadcasting
e_x = np.exp(z - s)
div = np.sum(e_x, axis=1)
div = div[:, np.newaxis] # dito
return e_x / div
n, k = X_test_transf.shape
X_ = np.hstack((np.ones((n, 1)), X_test_transf))
weights = np.hstack((cls[1].intercept_[:, np.newaxis], cls[1].coef_))
results = softmax(logit(X_, weights.T))
np.allclose(preds_test, results)
>>>True
There are two values for every predict_proba. The first value is the probability of the event not occurring and the probability of the event occurring. predict_proba(X)[:,1] to get the probability of the event occurring.
I'm trying to implement a 3D CNN using Keras. However, I am having some difficulties understanding some details in the results obtained and further enhancing the accuracy.
The data that I am trying to analyzing have the shape {64(d1)x64(d2)x38(d3)}, where d1 and d2 are the length and width of the image (64x64 pixels) and d3 is the time dimension. In other words, I have 38 images. The channel parameter is set to 1 as my data are actually raw data and not really colorful images.
My data consist of 219 samples, hence 219x64x64x38. They are divided into training and validation sets with 20% for validation. In addition, I have a fixed 147 additional data for testing.
Below is my code that works fine. It creates a txt file that saves the results for the different combination of parameters in my network (grid search). Here in this code, I only consider tuning 2 parameters: the number of filters and lambda for L2 regularizer. I fixed the dropout and the kernel size for the filters. However, later I considered their variations.
I also tried to set the seed value so that I have some sort of reproducibility (I don't think that I have achieved this task).
My question is that:
Given the below architecture and code, I always reach for all the given combinations of parameters a convergence for the training accuracy towards 1 (which is good). However, for the validation accuracy it is most of the time around 80% +/- 4% (rarely below 70%) despite the hyper-parameters combination. Similar behavior for the test accuracy. How can I enhance this accuracy to above 90% ?
As far as I know, having a gap between the train and validation/test accuracy is a result from overfitting. However, in my model I am adding dropouts and L2 regularizers and also changing the size of my network which should somehow reduce this gap (but it is not).
Is there anything else I can do besides modifying my input data? Does adding more layers help? Or is there maybe a pre-trained 3D CNN like in the case of 2D CNN (e.g., AlexNet)? Should I try ConvLSTM? Is this the limit of this architecture?
Thank you :)
import numpy as np
import tensorflow as tf
import keras
from keras.models import Sequential
from keras.layers import Conv3D, MaxPooling3D, Dense, Flatten, Activation
from keras.utils import to_categorical
from keras.regularizers import l2
from keras.layers import Dropout
from keras.utils import multi_gpu_model
import scipy.io as sio
from sklearn.metrics import accuracy_score
from sklearn.metrics import f1_score
from keras.callbacks import ReduceLROnPlateau
tf.set_random_seed(1234)
def normalize_minmax(X_train):
"""
Normalize to [0,1]
"""
from sklearn import preprocessing
min_max_scaler = preprocessing.MinMaxScaler()
X_minmax_train = min_max_scaler.fit_transform(X_train)
return X_minmax_train
# generate and prepare the dataset
def get_data():
# Load and prepare the data
X_data = sio.loadmat('./X_train')['X_train']
Y_data = sio.loadmat('./Y_train')['targets_train']
X_test = sio.loadmat('./X_test')['X_test']
Y_test = sio.loadmat('./Y_test')['targets_test']
return X_data, Y_data, X_test, Y_test
def get_model(X_train, Y_train, X_validation, Y_validation, F1_nb, F2_nb, F3_nb, kernel_size_1, kernel_size_2, kernel_size_3, l2_lambda, learning_rate, reduce_lr, dropout_conv1, dropout_conv2, dropout_conv3, dropout_dense, no_epochs):
no_classes = 5
sample_shape = (64, 64, 38, 1)
batch_size = 32
dropout_seed = 30
conv_seed = 20
# Create the model
model = Sequential()
model.add(Conv3D(F1_nb, kernel_size=kernel_size_1, kernel_regularizer=l2(l2_lambda), padding='same', kernel_initializer='glorot_uniform', input_shape=sample_shape))
model.add(Activation('selu'))
model.add(MaxPooling3D(pool_size=(2,2,2)))
model.add(Dropout(dropout_conv1, seed=conv_seed))
model.add(Conv3D(F2_nb, kernel_size=kernel_size_2, kernel_regularizer=l2(l2_lambda), padding='same', kernel_initializer='glorot_uniform'))
model.add(Activation('selu'))
model.add(MaxPooling3D(pool_size=(2,2,2)))
model.add(Dropout(dropout_conv2, seed=conv_seed))
model.add(Conv3D(F3_nb, kernel_size=kernel_size_3, kernel_regularizer=l2(l2_lambda), padding='same', kernel_initializer='glorot_uniform'))
model.add(Activation('selu'))
model.add(MaxPooling3D(pool_size=(2,2,2)))
model.add(Dropout(dropout_conv3, seed=conv_seed))
model.add(Flatten())
model.add(Dense(512, kernel_regularizer=l2(l2_lambda), kernel_initializer='glorot_uniform'))
model.add(Activation('selu'))
model.add(Dropout(dropout_dense, seed=dropout_seed))
model.add(Dense(no_classes, activation='softmax'))
model = multi_gpu_model(model, gpus = 2)
# Compile the model
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adam(lr=learning_rate),
metrics=['accuracy'])
# Train the model.
history = model.fit(X_train, Y_train, batch_size=batch_size, epochs=no_epochs, validation_data=(X_validation, Y_validation),callbacks=[reduce_lr])
return model, history
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2, patience=5, min_lr=0.0001)
learning_rate = 0.001
no_epochs = 100
X_data, Y_data, X_test, Y_test = get_data()
# Normalize the train/val data
for i in range(X_data.shape[0]):
for j in range(X_data.shape[3]):
X_data[i,:,:,j] = normalize_minmax(X_data[i,:,:,j])
X_data = np.expand_dims(X_data, axis=4)
# Normalize the test data
for i in range(X_test.shape[0]):
for j in range(X_test.shape[3]):
X_test[i,:,:,j] = normalize_minmax(X_test[i,:,:,j])
X_test = np.expand_dims(X_test, axis=4)
# Shuffle the training data
# fix random seed for reproducibility
seedValue = 40
permutation = np.random.RandomState(seed=seedValue).permutation(len(X_data))
X_data = X_data[permutation]
Y_data = Y_data[permutation]
Y_data = np.squeeze(Y_data)
Y_test = np.squeeze(Y_test)
#Split between train and validation (20%). Here I did not use the classical validation_split=0.2 just to make sure that the data is the same for the different architectures I am using.
X_train = X_data[0:175,:,:,:,:]
Y_train = Y_data[0:175]
X_validation = X_data[176:,:,:,:]
Y_validation = Y_data[176:]
Y_train = to_categorical(Y_train,num_classes=5).astype(np.integer)
Y_validation = to_categorical(Y_validation,num_classes=5).astype(np.integer)
Y_test = to_categorical(Y_test,num_classes=5).astype(np.integer)
l2_lambda_list = [(1*pow(10,-4)),(2*pow(10,-4)),
(3*pow(10,-4)),
(4*pow(10,-4)),
(5*pow(10,-4)),(6*pow(10,-4)),
(7*pow(10,-4)),
(8*pow(10,-4)),(9*pow(10,-4)),(10*pow(10,-4))
]
filters_nb = [(128,64,64),(128,64,32),(128,64,16),(128,64,8),(128,32,32),(128,32,16),(128,32,8),(128,16,8),(128,8,8),
(64,64,32),(64,64,16),(64,64,8),(64,32,32),(64,32,16),(64,32,8),(64,16,16),(64,16,8),(64,8,8),
(32,32,16),(32,32,8),(32,16,16),(32,16,8),(32,8,8),
(16,16,16),(16,16,8),(16,8,8)
]
DropOut = [(0.25,0.25,0.25,0.5),
(0,0,0,0.1),(0,0,0,0.2),(0,0,0,0.3),(0,0,0,0.4),(0,0,0,0.5),
(0.1,0.1,0.1,0),(0.2,0.2,0.2,0),(0.3,0.3,0.3,0),(0.4,0.4,0.4,0),(0.5,0.5,0.5,0),
(0.1,0.1,0.1,0.1),(0.1,0.1,0.1,0.2),(0.1,0.1,0.1,0.3),(0.1,0.1,0.1,0.4),(0.1,0.1,0.1,0.5),
(0.15,0.15,0.15,0.1),(0.15,0.15,0.15,0.2),(0.15,0.15,0.15,0.3),(0.15,0.15,0.15,0.4),(0.15,0.15,0.15,0.5),
(0.2,0.2,0.2,0.1),(0.2,0.2,0.2,0.2),(0.2,0.2,0.2,0.3),(0.2,0.2,0.2,0.4),(0.2,0.2,0.2,0.5),
(0.25,0.25,0.25,0.1),(0.25,0.25,0.25,0.2),(0.25,0.25,0.25,0.3),(0.25,0.25,0.25,0.4),(0.25,0.25,0.25,0.5),
(0.3,0.3,0.3,0.1),(0.3,0.3,0.3,0.2),(0.3,0.3,0.3,0.3),(0.3,0.3,0.3,0.4),(0.3,0.3,0.3,0.5),
(0.35,0.35,0.35,0.1),(0.35,0.35,0.35,0.2),(0.35,0.35,0.35,0.3),(0.35,0.35,0.35,0.4),(0.35,0.35,0.35,0.5)
]
kernel_size = [(3,3,3),
(2,3,3),(2,3,4),(2,3,5),(2,3,6),(2,3,7),(2,3,8),(2,3,9),(2,3,10),(2,3,11),(2,3,12),(2,3,13),(2,3,14),(2,3,15),
(3,3,3),(3,3,4),(3,3,5),(3,3,6),(3,3,7),(3,3,8),(3,3,9),(3,3,10),(3,3,11),(3,3,12),(3,3,13),(3,3,14),(3,3,15),
(3,4,3),(3,4,4),(3,4,5),(3,4,6),(3,4,7),(3,4,8),(3,4,9),(3,4,10),(3,4,11),(3,4,12),(3,4,13),(3,4,14),(3,4,15),
]
for l in range(len(l2_lambda_list)):
l2_lambda = l2_lambda_list[l]
f = open("My Results.txt", "a")
lambda_Str = str(l2_lambda)
f.write("---------------------------------------\n")
f.write("lambda = "+f"{lambda_Str}\n")
f.write("---------------------------------------\n")
for i in range(len(filters_nb)):
F1_nb = filters_nb[i][0]
F2_nb = filters_nb[i][1]
F3_nb = filters_nb[i][2]
kernel_size_1 = kernel_size[0]
kernel_size_2 = kernel_size_1
kernel_size_3 = kernel_size_1
dropout_conv1 = DropOut[0][0]
dropout_conv2 = DropOut[0][1]
dropout_conv3 = DropOut[0][2]
dropout_dense = DropOut[0][3]
# fit model
model, history = get_model(X_train, Y_train, X_validation, Y_validation, F1_nb, F2_nb, F3_nb, kernel_size_1, kernel_size_2, kernel_size_3, l2_lambda, learning_rate, reduce_lr, dropout_conv1, dropout_conv2, dropout_conv3, dropout_dense, no_epochs)
# Evaluate metrics
predictions = model.predict(X_test)
out = np.argmax(predictions, axis=1)
Y_test = sio.loadmat('./Y_test')['targets_test']
Y_test = np.squeeze(Y_test)
loss = history.history['loss'][no_epochs-1]
acc = history.history['acc'][no_epochs-1]
val_loss = history.history['val_loss'][no_epochs-1]
val_acc = history.history['val_acc'][no_epochs-1]
# accuracy: (tp + tn) / (p + n)
accuracy = accuracy_score(Y_test, out)
# f1: 2 tp / (2 tp + fp + fn)
f1 = f1_score(Y_test, out,average='macro')
a = str(filters_nb[i][0]) + ',' + str(filters_nb[i][1]) + ',' + str(filters_nb[i][2]) + ': ' + str('f1-metric: ') + str('%f' % f1) + str(' | loss: ') + str('%f' % loss) + str(' | acc: ') + str('%f' % acc) + str(' | val_loss: ') + str('%f' % val_loss) + str(' | val_acc: ') + str('%f' % val_acc) + str(' | test_acc: ') + str('%f' % accuracy)
f.write(f"{a}\n")
f.close()