I am doing the strStr II problem on Lintcode. For the input ("abcdef","bcd"), the output is -1, which is different from the expected value, 1. I did some debug process and found that the way I did could not get the same code value for the 'bcd' in the source and 'bcd' in the target. I just don't know what's going on.
def strStr2(self, source, target):
if source is None or target is None:
return -1
m = len(target)
if m == 0:
return 0
n = len(source)
base = 1000000
power = 1
for i in range(m - 1):
power = 26 * power % base
targetcode = 0
for i in range(m):
targetcode = (targetcode * 26 + ord(target[i]) - ord('a')) % base
if targetcode < 0:
targetcode += base
sourcecode = 0
for i in range(n):
sourcecode = (sourcecode * 26 + ord(source[i]) - ord('a')) % base
if i >= m:
sourcecode = (sourcecode - ord(source[i-m]) * power - ord('a')) % base
if sourcecode < 0:
sourcecode += base
if sourcecode == targetcode:
if source[i - m + 1, i + 1] == target:
return i - m + 1
return -1
It would seem you are trying to implement Rabin-Karp algorithm. There are a few errors in your code. Here is a commented version with the fixes.
Also, I believe you would gain efficiency by reducing hash collisions if your chose 1000000 and 26 to be prime numbers instead.
def strStr2(source, target):
# There is no need to check that source and target are not None
# Also, storing lengths as m and n only makes the code harder to read
if len(target) == 0:
return 0
base = 1000000
power = 1
for i in range(len(target)): # Your range was incorrect
power = 26 * power % base
targetcode = 0
for i in range(len(target)):
# There is no need to normalize your chars at 'a'
# That would not work for uppercase anyway
targetcode = (targetcode * 26 + ord(target[i])) % base
sourcecode = 0
for i in range(len(source)):
sourcecode = (sourcecode * 26 + ord(source[i])) % base
if i >= len(target):
# In the line below was an error in your priority of operation
sourcecode = (sourcecode - ord(source[i-len(target)]) * power) % base
# you do not need to check that sourcecode is < 0, since base is > 0
if sourcecode == targetcode:
# For slicing use : instead of , in Python
if source[i - len(target) + 1:i + 1] == target:
return i - len(target) + 1
return -1
And here are a few example to show it works.
strStr2("abcdef","bcd") # 1
strStr2("aaaabcdef","bcd") # 4
strStr2("abcdef","bcda") # -1
Related
This question was asked in a challenge in HackerEarth:
Mark is solving an interesting question. He needs to find out number
of distinct ways such that
(i + 2*j+ k) % (x + y + 2*z) = 0, where 1 <= i,j,k,x,y,z <= N
Help him find it.
Constraints:
1<= T<= 10
1<=N<= 1000
Input Format:
First line contains T, the number of test cases. Each of the test case
contains a single integer,N in a separate line.
Output Format:
For each test case , output in a separate line, the number of distinct
ways.
Sample Input
2
1
2
Sample Output
1
15
Explanation
In the first case, the only possible way is i = j = k = x =y = z = 1
I am not getting any way how to solve this problem, I have tried one and I know it's not even close to the question.
import random
def CountWays (N):
# Write your code here
i = random.uniform(1,N)
j = random.uniform(1,N)
k = random.uniform(1,N)
x = random.uniform(1,N)
y = random.uniform(1,N)
z = random.uniform(1,N)
d = 0
for i in range(N):
if (i+2*j+k)%(x+y+2*z)==0:
d += 1
return d
T = int(input())
for _ in range(T):
N = int(input())
out_ = CountWays(N)
print (out_)
My Output
0
0
Instead it should give the output
1
15
The value of the numerator (num) can range from 4 to 4N. The value of the denominator (dom) can range from 4 to num. You can split your problem into two smaller problems: 1) How many values of the denominator is a given value of the numerator divisible by? 2) How many ways can a given denominator and numerator be constructed?
To answer 1) we can simply loop through all the possible values of the numerator, then loop over all the values of the denominator where numerator % denominator == 0. To answer 2) we can find all the partitions of the numerator and denominator that satisfies the equality and constraints. The number of ways to construct a given numerator and denominator will be the product of the number of partitions of each.
import itertools
def divisible_numbers(n):
"""
Get all numbers with which n is divisible.
"""
for i in range(1,n+1):
if n % i == 0:
yield i
if i >= n:
break
def get_partitions(n):
"""
Generate ALL ways n can be partitioned into 3 integers.
Modified from http://code.activestate.com/recipes/218332-generator-for-integer-partitions/#c9
"""
a = [1]*n
y = -1
v = n
while v > 0:
v -= 1
x = a[v] + 1
while y >= 2 * x:
a[v] = x
y -= x
v += 1
w = v + 1
while x <= y:
a[v] = x
a[w] = y
if w == 2:
yield a[:w + 1]
x += 1
y -= 1
a[v] = x + y
y = a[v] - 1
if w == 3:
yield a[:w]
def get_number_of_valid_partitions(num, N):
"""
Get number of valid partitions of num, given that
num = i + j + 2k, and that 1<=i,j,k<=N
"""
n = 0
for partition in get_partitions(num):
# This can be done a bit more cleverly, but makes
# the code extremely complicated to read, so
# instead we just brute force the 6 combinations,
# ignoring non-unique permutations using a set
for i,j,k in set(itertools.permutations(partition)):
if i <= N and j <= N and k <= 2*N and k % 2 == 0:
n += 1
return n
def get_number_of_combinations(N):
"""
Get number of ways the equality can be solved under the given constraints
"""
out = 0
# Create a dictionary of number of valid partitions
# for all numerator values we can encounter
n_valid_partitions = {i: get_number_of_valid_partitions(i, N) for i in range(1,4*N+1)}
for numerator in range(4,4*N+1):
numerator_permutations = n_valid_partitions[numerator]
for denominator in divisible_numbers(numerator):
denominator_permutations = n_valid_partitions[denominator]
if denominator < 4:
continue
out += numerator_permutations * denominator_permutations
return out
N = 2
out = get_number_of_combinations(N)
print(out)
The scaling of the code right now is very poor due to the way the get_partitions and the get_number_of_valid_partitions functions interact.
EDIT
The following code is much faster. There's a small improvement to divisible_numbers, but the main speedup lies in get_number_of_valid_partitions not creating a needless amount of temporary lists as it has now been joined with get_partitions in a single function. Other big speedups comes from using numba. The code of get_number_of_valid_partitions is all but unreadable now, so I've added a much simpler but slightly slower version named get_number_of_valid_partitions_simple so you can understand what is going on in the complicated function.
import numba
#numba.njit
def divisible_numbers(n):
"""
Get all numbers with which n is divisible.
Modified fromĀ·
"""
# We can save some time by only looking at
# values up to n/2
for i in range(4,n//2+1):
if n % i == 0:
yield i
yield n
def get_number_of_combinations(N):
"""
Get number of ways the equality can be solved under the given constraints
"""
out = 0
# Create a dictionary of number of valid partitions
# for all numerator values we can encounter
n_valid_partitions = {i: get_number_of_valid_partitions(i, N) for i in range(4,4*N+1)}
for numerator in range(4,4*N+1):
numerator_permutations = n_valid_partitions[numerator]
for denominator in divisible_numbers(numerator):
if denominator < 4:
continue
denominator_permutations = n_valid_partitions[denominator]
out += numerator_permutations * denominator_permutations
return out
#numba.njit
def get_number_of_valid_partitions(num, N):
"""
Get number of valid partitions of num, given that
num = i + j + 2l, and that 1<=i,j,l<=N.
"""
count = 0
# In the following, k = 2*l
#There's different cases for i,j,k that we can treat separately
# to give some speedup due to symmetry.
#i,j can be even or odd. k <= N or N < k <= 2N.
# Some combinations only possible if num is even/odd
# num is even
if num % 2 == 0:
# i,j odd, k <= 2N
k_min = max(2, num - 2 * (N - (N + 1) % 2))
k_max = min(2 * N, num - 2)
for k in range(k_min, k_max + 1, 2):
# only look at i<=j
i_min = max(1, num - k - N + (N + 1) % 2)
i_max = min(N, (num - k)//2)
for i in range(i_min, i_max + 1, 2):
j = num - i - k
# if i == j, only one permutations
# otherwise two due to symmetry
if i == j:
count += 1
else:
count += 2
# i,j even, k <= N
# only look at k<=i<=j
k_min = max(2, num - 2 * (N - N % 2))
k_max = min(N, num // 3)
for k in range(k_min, k_max + 1, 2):
i_min = max(k, num - k - N + N % 2)
i_max = min(N, (num - k) // 2)
for i in range(i_min, i_max + 1, 2):
j = num - i - k
if i == j == k:
# if i == j == k, only one permutation
count += 1
elif i == j or i == k or j == k:
# if only two of i,j,k are the same there are 3 permutations
count += 3
else:
# if all differ, there are six permutations
count += 6
# i,j even, N < k <= 2N
k_min = max(N + 1 + (N + 1) % 2, num - 2 * N)
k_max = min(2 * N, num - 4)
for k in range(k_min, k_max + 1, 2):
# only look for i<=j
i_min = max(2, num - k - N + 1 - (N + 1) % 2)
i_max = min(N, (num - k) // 2)
for i in range(i_min, i_max + 1, 2):
j = num - i - k
if i == j:
# if i == j, only one permutation
count += 1
else:
# if all differ, there are two permutations
count += 2
# num is odd
else:
# one of i,j is even, the other is odd. k <= N
# We assume that j is odd, k<=i and correct the symmetry in the counts
k_min = max(2, num - 2 * N + 1)
k_max = min(N, (num - 1) // 2)
for k in range(k_min, k_max + 1, 2):
i_min = max(k, num - k - N + 1 - N % 2)
i_max = min(N, num - k - 1)
for i in range(i_min, i_max + 1, 2):
j = num - i - k
if i == k:
# if i == j, two permutations
count += 2
else:
# if i and k differ, there are four permutations
count += 4
# one of i,j is even, the other is odd. N < k <= 2N
# We assume that j is odd and correct the symmetry in the counts
k_min = max(N + 1 + (N + 1) % 2, num - 2 * N + 1)
k_max = min(2 * N, num - 3)
for k in range(k_min, k_max + 1, 2):
i_min = max(2, num - k - N + (N + 1) % 2)
i_max = min(N, num - k - 1)
for i in range(i_min, i_max + 1, 2):
j = num - i - k
count += 2
return count
#numba.njit
def get_number_of_valid_partitions_simple(num, N):
"""
Simpler but slower version of 'get_number_of_valid_partitions'
"""
count = 0
for k in range(2, 2 * N + 1, 2):
for i in range(1, N + 1):
j = num - i - k
if 1 <= j <= N:
count += 1
return count
if __name__ == "__main__":
N = int(sys.argv[1])
out = get_number_of_combinations(N)
print(out)
The current issue with your code is that you've picked random numbers once, then calculate the same equation N times.
I assume you wanted to generate 1..N for each individual variable, which would require 6 nested loops from 1..N, for each variable
Now, that's the brute force solution, which probably fails on large N values, so as I commented, there's some trick to find the multiples of the right side of the modulo, then check if the left side portion is contained in that list. That would only require two triple nested lists, I think
(i + 2*j+ k) % (x + y + 2*z) = 0, where 1 <= i,j,k,x,y,z <= N
(2*j + i + k) is a multiple of (2*z + x + y)
N = 2
min(2*j + i + k) = 4
max(2*j + i + k) = 8
ways to make 4: 1 * 1 = 1
ways to make 5: 2 * 2 = 4
ways to make 6: 2 * 2 = 4
ways to make 7: 2 * 2 = 4
ways to make 8: 1 * 1 = 1
Total = 14
But 8 is a multiple of 4 so we add one more instance for a total of 15.
I've written a Timsort sorting algorithm for a computer science class, I would like to be able to compare the runtime to other similar algorithms, such as merge sort for instance. However, I am not sure where I should put the count (ie: count +=1)within the code to have an accurate run time. Any help would be much appreciated.
RUN = 32
def insertion_sort(arr, left, right):
for i in range(left + 1, right + 1):
temp = arr[i]
j = i - 1
while (arr[j] > temp and j >= left):
arr[j + 1] = arr[j]
arr[j] = temp
j -= 1
def merge(arr, left, right, count):
c = 0
index = count
length = len(left) + len(right)
while left and right:
if left[0] < right[0]:
arr[index] = left.pop(0)
c += 1
index += 1
else:
arr[index] = right.pop(0)
c += 1
index += 1
if len(left) == 0:
while c < length:
arr[index] = right.pop(0)
c += 1
index += 1
elif len(right) == 0:
while c < length:
arr[index] = left.pop(0)
c += 1
index += 1
def tim_sort(arr):
n = len(arr)
for i in range(0, n, RUN):
insertion_sort(arr, i, min((i + (RUN - 1)), (n - 1)))
size = RUN
while size < n:
for left in range(0, n, 2 * size):
if (left + size > n):
merge(arr, arr[left:n], [], left)
else:
left_sub_arr = arr[left:(left + size)]
right_sub_arr = arr[(left + size):min((left + 2 * size), n)]
merge(arr, left_sub_arr, right_sub_arr, left)
size *= 2
return arr
I want to perform Monte Carlo simulation to the particles which are interacting via Lennard-Jones potential + FENE potential. I'm getting negative values in the FENE potential which have the log value in it. The error is "RuntimeWarning: invalid value encountered in log return (-0.5 * K * R**2 * np.log(1-((np.sqrt(rij2) - r0) / R)**2))" The FENE potential is given by:
import numpy as np
def gen_chain(N, R0):
x = np.linspace(1, (N-1)*0.8*R0, num=N)
y = np.zeros(N)
z = np.zeros(N)
return np.column_stack((x, y, z))
def lj(rij2):
sig_by_r6 = np.power(sigma/rij2, 3)
sig_by_r12 = np.power(sig_by_r6, 2)
lje = 4.0 * epsilon * (sig_by_r12 - sig_by_r6)
return lje
def fene(rij2):
return (-0.5 * K * R**2 * np.log(1-((np.sqrt(rij2) - r0) / R)**2))
def total_energy(coord):
# Non-bonded
e_nb = 0
for i in range(N):
for j in range(i-1):
ri = coord[i]
rj = coord[j]
rij = ri - rj
rij2 = np.dot(rij, rij)
if (np.sqrt(rij2) < rcutoff):
e_nb += lj(rij2)
# Bonded
e_bond = 0
for i in range(1, N):
ri = coord[i]
rj = coord[i-1]
rij = ri - rj
rij2 = np.dot(rij, rij)
e_bond += fene(rij2)
return e_nb + e_bond
def move(coord):
trial = np.ndarray.copy(coord)
for i in range(N):
delta = (2.0 * np.random.rand(3) - 1) * max_delta
trial[i] += delta
return trial
def accept(delta_e):
beta = 1.0/T
if delta_e <= 0.0:
return True
random_number = np.random.rand(1)
p_acc = np.exp(-beta*delta_e)
if random_number < p_acc:
return True
return False
if __name__ == "__main__":
# FENE parameters
K = 40
R = 0.3
r0 = 0.7
# LJ parameters
sigma = r0/0.33
epsilon = 1.0
# MC parameters
N = 50 # number of particles
rcutoff = 2.5*sigma
max_delta = 0.01
n_steps = 10000000
T = 0.5
coord = gen_chain(N, R)
energy_current = total_energy(coord)
traj = open('traj.xyz', 'w')
for step in range(n_steps):
if step % 1000 == 0:
traj.write(str(N) + '\n\n')
for i in range(N):
traj.write("C %10.5f %10.5f %10.5f\n" % (coord[i][0], coord[i][1], coord[i][2]))
print(step, energy_current)
coord_trial = move(coord)
energy_trial = total_energy(coord_trial)
delta_e = energy_trial - energy_current
if accept(delta_e):
coord = coord_trial
energy_current = energy_trial
traj.close()
The problem is that calculating rij2 = np.dot(rij, rij) in total energy with the constant values you use is always a very small number. Looking at the expression inside the log used to calculate FENE, np.log(1-((np.sqrt(rij2) - r0) / R)**2), I first noticed that you're taking the square root of rij2 which is not consistent with the formula you provided.
Secondly, notice that ((rij2 - r0) / R)**2 is the same as ((r0 - rij2) / R)**2, since the sign gets lost when squaring. Because rij2 is very small (already in the first iteration -- I checked by printing the values), this will be more or less equal to ((r0 - 0.05)/R)**2 which will be a number bigger than 1. Once you subtract this value from 1 in the log expression, 1-((np.sqrt(rij2) - r0) / R)**2 will be equal to np.nan (standing for "Not A Number"). This will propagate through all the function calls (for example, calling energy_trial = total_energy(coord_trial) will effectively set energy_trial to np.nan), until an error will be raised by some function.
Maybe you could do something with np.isnan() call, documented here. Moreover, you should check how you iterate through the coord (there's some inconsistencies throughout the code) -- I suggest you check the code review community as well.
I tried running the program below:
from functools import lru_cache
#lru_cache(Maxsize = None)
def count(n):
factorial_num = 1
num_digits = 0
if n == 1:
factorial_num = 1
else:
factorial_num = n * count(n-1)
return len(str(factorial_num))
However, it didn't give me the length of the factorial number as anticipated.
I also wanted to use the code to find the factorial of very big numbers in range of billions and tried using lru_cache. Still, no luck.
As Aziz pointed out in the comments, your recursive case is wrong.
factorial_num = n * count(n-1)
This would do something useful if count(n-1) actually returned (n-1)!, but it doesn't, since you're trying to return a digit count instead.
>>> count(1)
1 # Base case is correct.
>>> count(2)
1 # 2 * count(1) = 2 * 1 = 2. Whose *length* is 1 digit.
>>> count(9)
1 # For all single-digit n, count(n) is still 1.
>>> count(10)
2 # 10 * count(9) = 10 * 1 = 10. Whose *length* is 2 digits.
You should write a function that just calculates the factorial, instead of trying to mix this logic with the digit counting.
#lru_cache(maxsize=None)
def factorial(n):
if n == 0:
return 1
else:
return n * factorial(n - 1)
Note that recent versions of Python have a built-in math.factorial function, which you could use instead if your teacher is not requiring you to roll your own factorial code.
Then, you can simply use len(str(factorial(n))) to count the digits.
You can use Kamenetsky formula to return the number of digits in n!
For minor numbers use:
def findDigits(n):
if (n < 0):
return 0;
if (n <= 1):
return 1;
digits = 0;
for i in range(2, n + 1):
digits += math.log10(i);
return math.floor(digits) + 1;
For bigger numbers use:
def findDigits(n):
if (n < 0):
return 0;
if (n <= 1):
return 1;
x = ((n * math.log10(n / math.e) +
math.log10(2 * math.pi * n) /2.0));
return math.floor(x) + 1;
source: https://www.geeksforgeeks.org/count-digits-factorial-set-1/?ref=lbp and https://www.geeksforgeeks.org/count-digits-factorial-set-2/?ref=lbp
I need to find a way to write cos(1) in python using a while loop. But i cant use any math functions. Can someone help me out?
for example I also had to write the value of exp(1) and I was able to do it by writing:
count = 1
term = 1
expTotal = 0
xx = 1
while abs(term) > 1e-20:
print("%1d %22.17e" % (count, term))
expTotal = expTotal + term
term=term * xx/(count)
count+=1
I amm completely lost as for how to do this with the cos and sin values though.
Just change your expression to compute the term to:
term = term * (-1 * x * x)/( (2*count) * ((2*count)-1) )
Multiplying the count by 2 could be changed to increment the count by 2, so here is your copypasta:
import math
def cos(x):
cosTotal = 1
count = 2
term = 1
x=float(x)
while abs(term) > 1e-20:
term *= (-x * x)/( count * (count-1) )
cosTotal += term
count += 2
print("%1d %22.17e" % (count, term))
return cosTotal
print( cos(1) )
print( math.cos(1) )
You can calculate cos(1) by using the Taylor expansion of this function:
You can find more details on Wikipedia, see an implementation below:
import math
def factorial(n):
if n == 0:
return 1
else:
return n * factorial(n-1)
def cos(order):
a = 0
for i in range(0, order):
a += ((-1)**i)/(factorial(2*i)*1.0)
return a
print cos(10)
print math.cos(1)
This gives as output:
0.540302305868
0.540302305868
EDIT: Apparently the cosine is implemented in hardware using the CORDIC algorithm that uses a lookup table to calculate atan. See below a Python implementation of the CORDIS algorithm based on this Google group question:
#atans = [math.atan(2.0**(-i)) for i in range(0,40)]
atans =[0.7853981633974483, 0.4636476090008061, 0.24497866312686414, 0.12435499454676144, 0.06241880999595735, 0.031239833430268277, 0.015623728620476831, 0.007812341060101111, 0.0039062301319669718, 0.0019531225164788188, 0.0009765621895593195, 0.0004882812111948983, 0.00024414062014936177, 0.00012207031189367021, 6.103515617420877e-05, 3.0517578115526096e-05, 1.5258789061315762e-05, 7.62939453110197e-06, 3.814697265606496e-06, 1.907348632810187e-06, 9.536743164059608e-07, 4.7683715820308884e-07, 2.3841857910155797e-07, 1.1920928955078068e-07, 5.960464477539055e-08, 2.9802322387695303e-08, 1.4901161193847655e-08, 7.450580596923828e-09, 3.725290298461914e-09, 1.862645149230957e-09, 9.313225746154785e-10, 4.656612873077393e-10, 2.3283064365386963e-10, 1.1641532182693481e-10, 5.820766091346741e-11, 2.9103830456733704e-11, 1.4551915228366852e-11, 7.275957614183426e-12, 3.637978807091713e-12, 1.8189894035458565e-12]
def cosine_sine_cordic(beta,N=40):
# in hardware, put this in a table.
def K_vals(n):
K = []
acc = 1.0
for i in range(0, n):
acc = acc * (1.0/(1 + 2.0**(-2*i))**0.5)
K.append(acc)
return K
#K = K_vals(N)
K = 0.6072529350088812561694
x = 1
y = 0
for i in range(0,N):
d = 1.0
if beta < 0:
d = -1.0
(x,y) = (x - (d*(2.0**(-i))*y), (d*(2.0**(-i))*x) + y)
# in hardware put the atan values in a table
beta = beta - (d*atans[i])
return (K*x, K*y)
if __name__ == '__main__':
beta = 1
cos_val, sin_val = cosine_sine_cordic(beta)
print "Actual cos: " + str(math.cos(beta))
print "Cordic cos: " + str(cos_val)
This gives as output:
Actual cos: 0.540302305868
Cordic cos: 0.540302305869