Code, data, heap and stack layout without Segments in x64 long mode - 64-bit

All right, it is clear that segmentation is not used in x64 long mode anymore.
But how we can use the stack... all references were based on the stack register or how we use variables in the data segment if all segment registers have 0 values.
I have problems joining the classical process layout in a world without segments.

All references are still based on the segment registers, but the segment base is forced to 0 (except for FS and GS) and the segment limit is forced to 264 - 1.

Related

How do I find the range(s) of MMAPable virtual addresses in a program?

Background information:
I'm using 64 bit Arch on an x86 system.
I'm not using libc or any language that depends on libc. I'm using a proprietary research language. I am making my syscalls through inline assembly.
I'm writing an experimental custom allocator for a research project, so a portable solution is a nice-to-have, but not a requirement.
My programs are statically linked and I am willing and able to rewrite the libraries I'm using to account for a given solution.
According to this SO post: Where is the stack memory allocated from for a Linux process? A program's virtual address space is organized like this:
------------------ <--- Top of the process address space
Stack (grows down)
v v v v v v v v v
------------------
(unmapped)
------------------ <--- Maximum stack size.
(unmapped)
-------------------
mmap
-------------------
(unmapped)
-------------------
^ ^ ^ ^ ^ ^ ^ ^ ^ ^
brk (grows up)
-------------------
BSS
-------------------
Data
-------------------
Text
-------------------
------------------- <--- Bottom or process address space.
Presuming this is correct, I'm trying to find the range of MMAPable addresses between brk and the stack.
Is it sufficient to find the lower bound by getting a ptr from sbrk(0), page aligning the ptr upwards, and then ensuring that brk and sbrk are never called again?
Is it sufficient to safely approximate the upper bound by getting a ptr to some location on the stack, getting the max size of the stack from getrlimit, subtracting that from the ptr, page aligning the ptr downwards, and then ensuring the size of the stack is never changed by setrlimit?
I don't need an exact range here, but I do need a large contiguous range of addresses that are guaranteed to be safely MMAPable(presuming I don't clobber them myself, of course). During my research I came across this: https://www.ibm.com/docs/en/aix/7.2?topic=memory-understanding-mapping , which says:
For 64-bit processes, two sets of address ranges with the process address space are available for mmap or shmat mappings. The first, consisting of the single range 0x07000000_00000000-0x07FFFFFF_FFFFFFFF, is available for both fixed-location and variable-location mappings. The second set of address ranges is available for fixed-location mappings only and consists of the ranges 0x30000000-0xCFFFFFFF, 0xE0000000-0xEFFFFFFF, and 0x10_00000000-0x06FFFFFF_FFFFFFFF. The last range of this set, consisting of 0x10_00000000-0x06FFFFFF_FFFFFFFF, is also made available to system loader to hold program text, data and heap, so only unused portions of the range are available for fixed-location mappings.
This is the exact kind of information I need, but it's for the wrong OS. If anyone can help me find this same information about Linux in general and Arch specifically, then that would be a great help.
After a lot of testing I've found the solution I proposed in the question does work. I've been using cat /proc/<pid>/maps to check my custom allocator, and it's behaving as I expected. To reiterate the solution:
To find the lower bound use sbrk(0), make sure the ptr is page aligned, and then ensure that brk and sbrk are never called again.
To safely approximate the upper bound find the stack size with getrlimit, subtract that from a ptr into the stack, page align the ptr, and then never change the stack size with setrlimit.
If you might need to touch brk, sbrk, or setrlimit, then you can also add some padding to the lower bound and subtract some padding from the upper bound. You can dynamically compute a safe amount of padding by finding how much memory the system has with /proc/meminfo, or if you don't need a general solution you can just over-approximate how much you'll need based on what you're doing.

Where do FS and GS registers get mapped to in the linear address space?

I understand that in 32 bit you have segments where each segment would map to a base and limit. Therefore, a segment wouldn't be able to access another segments data.
With 64 bit, we throw away most of the segments and have a base of 0 with no limit, thus accessing the entire 64 bit address space. But I get confused when they state we have FS and GS registers for thread local storage and additional data.
If the default segment can access anything in the linear address space, then what is stopping the program from corrupting or accessing the FS/GS segments? The OS would have to keep track of FS/GS and make sure nothing else gets allocated there right? How does this work?
Also, if the default area can access anything, then why do we even have FS/GS. I guess FS makes sense because we can just switch the register during a thread switch. But why even use GS? Why not malloc memory instead? Sorry I am new to OS.
In 64-bit mode, the FS and GS "segment registers" aren't really used, per se. But using an FS or GS segment override for a memory access causes the address to be offset by the value contained in a hidden FSBASE/GSBASE register which can be set by a special instruction (possibly privileged, in which case a system call can ask the kernel to do it). So for instance, if FSBASE = 0x12340000 and RDI = 0x56789, then MOV AL, FS:[RDI] will load from linear address 0x12396789.
This is still just a linear address - it's not separate from the rest of the process's address space in any way, and it's subject to all the same paging and memory protection as any other memory access. The program could get the exact same effect with MOV AL, [0x12396789] (since DS has a base of 0). It is up to the program's usual memory allocation mechanisms to allocate an appropriate block of memory and set FSBASE to point to that block, if it intends to use FS in this way. There are no special protections needed to avoid "corrupting" this memory, any more than they are needed to prevent a program from corrupting any other part of its own memory.
So it doesn't really provide new functionality - it's more a convenience for programmers and compilers. As you say, it's nice for something like a pointer to thread-local storage, but if we didn't have FS/GS, there are plenty of other ways we could keep such a pointer in the thread's state (say, reserving R15). It's true that there's not an obvious general need for two such registers; for the most part, the other one is just there in case someone comes up with a good way to use it in a particular program.
See also:
How are the fs/gs registers used in Linux AMD64?
What is the "FS"/"GS" register intended for?

Linux Segmentation

Recently, I read a book called Understanding the linux kernel. There is a sentence that confused me a lot. Can anybody explain this to me?
As stated earlier, the Current Privilege Level of the CPU indicates
whether the processor is in User or Kernel Mode and is specified by
the RPL field of the Segment Selector stored in the cs register.
Whenever the CPL is changed, some segmentation registers must be
correspondingly updated. For instance, when the CPL is equal to 3
(User Mode), the ds register must contain the Segment Selector of the
user data segment,but when the CPL is equal to 0, the ds register must contain the Segment Selector of the kernel data segment.
A similar situation occurs for the ss register. It must refer to a
User Mode stack inside the user data segment when the CPL is 3, and it
must refer to a Kernel Mode stack inside the kernel data segment when
the CPL is 0. When switching from User Mode to Kernel Mode, Linux
always makes sure that the ss register contains the Segment Selector
of the kernel data segment.
When saving a pointer to an instruction or to a data structure, the
kernel does not need to store the Segment selector component of the
logical address, because the ss register contains the current Segment
Selector.
As an example, when the kernel invokes a function, it executes a call
assembly language instruction specifying just the Offset component of
its logical address; the Segment Selector is implicitly selected as
the one referred to by the cs register. Because there is just one
segment of type “executable in Kernel Mode,” namely the code segment
identified by __KERNEL_CS, it is sufficient to load __KERNEL_CS into
cs whenever the CPU switches to Kernel Mode. The same argument goes
for pointers to kernel data structures (implicitly using the ds
register), as well as for pointers to user data structures (the kernel
explicitly uses the es register).
My understanding is the ss register contains the Segment Selector point to the base of the stack. Does ss register have anything to do with the pointer to an instruction that affects a data structure? If it doesn't, why mention it here?
Finally I make it clear what's the meaning of that paragraph. Actually, this piece of description demonstrates how segmentation works in Linux. It really has implicit objects of comparison--those systems exploit segmentation but not paging. How those systems works? Each process has different segment selectors in their logical address which point to different entries in global descriptor table. Each segment doesn't necessarily need to have the same base. In that case, when you save a pointer to an instruction or data structure, you really have to take care of its segment base. Notice that each logical address has a 16-bit segment selector and a 32-bit offset. If you only save the offset, it's not possible to find that pointer again because there are a lot of different segments in GDT. Things are different when it comes to Linux. All segment selectors have the same base 0. That means a pointer's offset is special enough for picking it up from memory. You might ask, does it work when there are lots of processes running there? It works! Remember each process has its Page Table which has the magical power to map same addresses to different physical addresses. Thanks for all of you who care this question!
My understanding is the ss register contains the Segment Selector
point to the base of the stack.
Right
Does ss register have anything to do with the pointer to an instruction to to a data structure?
No, ss register does not have anything to do with instructions that affect data segment.
If it doesn't, why mention it here?
Because ss register influences the result of instructions that affect the stack (eg : pop, push, etc.).
They are just explaining that Linux maintains also two stack segments (one for user mode, and one for kernel mode) as well as two data segments (one for user mode, and one for kernel mode).
As for the data segment if not updated when switching from user mode to kernel mode, the ss selector would still point to the user stack and the kernel would work with the user stack (would be very bad, right?). So the kernel takes care of updating the ss register as well as the ds register.
NB:
Let's recall that an instruction may access/modify bits in the data segment (mov to a memory address, ) as well as in the stack segment (pop, push, etc.)

Segmentation registers use

I am trying to understand how memory management goes on low level and have a couple of questions.
1) A book about assembly language by by Kip R. Irvine says that in the real mode first three segment registers are loaded with base addresses of code, data, and stack segment when the program starts. This is a bit ambigous to me. Are these values specified manually or does the assembler generates instructions to write the values into registers? If it happens automatically, how it finds out what is the size of these segments?
2) I know that Linux uses flat linear model, i.e. uses segmentation in a very limited way. Also, according to "Understanding the Linux Kernel" by Daniel P. Bovet and Marco Cesati there are four main segments: user data, user code, kernel data and kernel code in GDT. All four segments have the same size and base address. I do not understand why there is need in four of them if they differ only in type and access rights (they all produce the same linear address, right?). Why not use just one of them and write its descriptor to all segment registers?
3) How operating systems that do not use segmentation divide programs into logical segments? For example, how they differentiate stack from code without segment descriptors. I read that paging can be used to handle such things, but don't understand how.
You must have read some really old books because nobody program for real-mode anymore ;-) In real-mode, you can get the physical address of a memory access with physical address = segment register * 0x10 + offset, the offset being a value inside one of the general-purpose registers. Because these registers are 16 bit wide, a segment will be 64kb long and there is nothing you can do about its size, just because there is no attribute! With the * 0x10 multiplication, 1mb of memory become available, but there are overlapping combinations depending on what you put in the segment registers and the address register. I haven't compiled any code for real-mode, but I think it's up to the OS to setup the segment registers during the the binary loading, just like a loader would allocate some pages when loading an ELF binary. However I do have compiled bare-metal kernel code, and I had to setup these registers by myself.
Four segments are mandatory in the flat model because of architecture constraints. In protected-mode the segment registers no more contains the segment base address, but a segment selector which is basically an offset into the GDT. Depending on the value of the segment selector, the CPU will be in a given level of privilege, this is the CPL (Current Privilege Level). The segment selector points to a segment descriptor which has a DPL (Descriptor Privilege Level), which is eventually the CPL if the segment register is filled with with this selector (at least true for the code-segment selector). Therefore you need at least a pair of segment selectors to differentiate the kernel from the userland. Moreover, segments are either code segment or data segment, so you eventually end up with four segment descriptors in the GDT.
I don't have any example of serious OS which make any use of segmentation, just because segmentation is still present for backward compliancy. Using the flat model approach is nothing but a mean to get rid of it. Anyway, you're right, paging is way more efficient and versatile, and available on almost all architecture (the concepts at least). I can't explain here paging internals, but all the information you need to know are inside the excellent Intel man: Intel® 64 and IA-32 Architectures
Software Developer’s Manual
Volume 3A:
System Programming Guide, Part 1
Expanding on Benoit's answer to question 3...
The division of programs into logical parts such as code, constant data, modifiable data and stack is done by different agents at different points in time.
First, your compiler (and linker) creates executable files where this division is specified. If you look at a number of executable file formats (PE, ELF, etc), you'll see that they support some kind of sections or segments or whatever you want to call it. Besides addresses and sizes and locations within the file, those sections bear attributes telling the OS the purpose of these sections, e.g. this section contains code (and here's the entry point), this - initialized constant data, that - uninitialized data (typically not taking space in the file), here's something about the stack, over there is the list of dependencies (e.g. DLLs), etc.
Next, when the OS starts executing the program, it parses the file to see how much memory the program needs, where and what memory protection is needed for every section. The latter is commonly done via page tables. The code pages are marked as executable and read-only, the constant data pages are marked as not executable and read-only, other data pages (including those of the stack) are marked as not executable and read-write. This is how it ought to be normally.
Often times programs need read-write and, at the same time, executable regions for dynamically generated code or just to be able to modify the existing code. The combined RWX access can be either specified in the executable file or requested at run time.
There can be other special pages such as guard pages for dynamic stack expansion, they're placed next to the stack pages. For example, your program starts with enough pages allocated for a 64KB stack and then when the program tries to access beyond that point, the OS intercepts access to those guard pages, allocates more pages for the stack (up to the maximum supported size) and moves the guard pages further. These pages don't need to be specified in the executable file, the OS can handle them on its own. The file should only specify the stack size(s) and perhaps the location.
If there's no hardware or code in the OS to distinguish code memory from data memory or to enforce memory access rights, the division is very formal. 16-bit real-mode DOS programs (COM and EXE) didn't have code, data and stack segments marked in some special way. COM programs had everything in one common 64KB segment and they started with IP=0x100 and SP=0xFFxx and the order of code and data could be arbitrary inside, they could intertwine practically freely. DOS EXE files only specified the starting CS:IP and SS:SP locations and beyond that the code, data and stack segments were indistinguishable to DOS. All it needed to do was load the file, perform relocation (for EXEs only), set up the PSP (Program Segment Prefix, containing the command line parameter and some other control info), load SS:SP and CS:IP. It could not protect memory because memory protection isn't available in the real address mode, and so the 16-bit DOS executable formats were very simple.
Wikipedia is your friend in this case. http://en.wikipedia.org/wiki/Memory_segmentation and http://en.wikipedia.org/wiki/X86_memory_segmentation should be good starting points.
I'm sure there are others here who can personally provide in-depth explanations, though.

program life in terms of paged segmentation memory

I have a confusing notion about the process of segmentation & paging in x86 linux machines. Will be glad if some clarify all the steps involved from the start to the end.
x86 uses paged segmentation memory technique for memory management.
Can any one please explain what happens from the moment an executable .elf format file is loaded from hard disk in to main memory to the time it dies. when compiled the executable has different sections in it (text, data, stack, heap, bss). how will this be loaded ? how will they be set up under paged segmentation memory technique.
Wanted to know how the page tables get set up for the loaded program ? Wanted to know how GDT table gets set up. how the registers are loaded ? and why it is said that logical addresses (the ones that are processed by segmentation unit of MMU are 48 bits (16 bits of segment selector + 32 bit offset) when it is a bit 32 bit machine. how will other 16 bits be stored ? any thing accessed from ram must be 32 bits or 4 bytes how does the rest of 16 bits be accessed (to be loaded into segment registers) ?
Thanks in advance. the question can have a lot of things. but wanted to get clarification about the entire life cycle of an executable. Will be glad if some answers and pulls up a discussion on this.
Unix traditionally has implemented protection via paging. 286+ provides segmentation, and 386+ provides paging. Everyone uses paging, few make any real use of segmentation.
In x86, every memory operand has an implicit segment (so the address is really 16 bit selector + 32 bit offset), depending on the register used. So if you access [ESP + 8] the implied segment register is SS, if you access [ESI] the implied segment register is DS, if you access [EDI+4] the implied segment register is ES,... You can override this via segment prefix overrides.
Linux, and virtually every modern x86 OS, uses a flat memory model (or something similar). Under a flat memory model each segment provides access to the whole memory, with a base of 0 and a limit of 4Gb, so you don't have to worry about the complications segmentation brings about. Basically there are 4 segments: kernelspace code (RX), kernelspace data (RW), userspace code (RX), userspace data (RW).
An ELF file consists of some headers that pont to "program segments" and "sections". Section are used for linking. Program segments are used for loading. Program segments are mapped into memory via mmap(), this setups page-table entries with appropriate permissions.
Now, older x86 CPUs' paging mechanism only provided RW access control (read permission implies execute permission), while segmentation provided RWX access control. The end permission takes into account both segmentation and paging (e.g: RW (data segment) + R (read only page) = R (read only), while RX (code segment) + R (read only page) = RX (read and execute)).
So there are some patches that provide execution prevention via segmentation: e.g. OpenWall provided a non-executable stack by shrinking the code segment (the one with execute permission), and having special emulation in the page fault handler for anything that needed execution from a high memory address (e.g: GCC trampolines, self-modified code created on the stack to efficiently implement nested functions).
There's no such thing as paged segmentation, not in the official documentation at least. There are two different mechanisms working together and more or less independently of each other:
Translation of a logical address of the form 16-bit segment selector value:16/32/64-bit segment offset value, that is, a pair of 2 numbers into a 32/64-bit virtual address.
Translation of the virtual address into a 32/64-bit physical address.
Logical addresses is what your applications operate directly with. Then follows the above 2-step translation of them into what the RAM will understand, physical addresses.
In the first step the GDT (or it can be LDT, depends on the selector value) is indexed by the selector to find the relevant segment's base address and size. The virtual address will be the sum of the segment base address and the offset. The segment size and other things in segment descriptors are needed to provide protection.
In the second step the page tables are indexed by different parts of the virtual address and the last indexed table in the hierarchy gives the final, physical address that goes out on the address bus for the RAM to see. Just like with segment descriptors, page table entries contain not only addresses but also protection control bits.
That's about it on the mechanisms.
Now, in many x86 OSes the segment selectors that are used for applications are fixed, they are the same in all of them, they never change and they point to segment descriptors that have base addresses equal to 0 and sizes equal to the possible maximum (e.g. 4GB in non-64-bit modes). Such a GDT setup effectively means that the first step does no useful work and the offset part of the logical address translates into numerically equal virtual address.
This makes the segment selector values practically useless. They still have to be loaded into the CPU's segment registers (in non-64-bit modes into at least CS, SS, DS and ES), but beyond that point they can be forgotten about.
This all (except Linux-related details and the ELF format) is explained in or directly follows from Intel's and AMD's x86 CPU manuals. You'll find many more details there.
Perhaps read the Assembly HOWTO. When a Linux process starts to execute an ELF executable using the execve system call, it is essentially (sort of) mmap-ing some segments (and initializing registers, and a tiny part of the stack). Read also the SVR4 x86 ABI supplement and its x86-64 variant. Don't forget that a Linux process only see memory mapping for its address space and only cares about virtual memory
There are many good books on Operating Systems (=O.S.) kernels, notably by A.Tanenbaum & by M.Bach, and some on the linux kernel
NB: segment registers are nearly (almost) unused on Linux.

Resources