Preparing binary represented data for fpgrowth on Spark - apache-spark

I am currently working on the Santander Product Recommendation dataset from Kaggle to make experiments on FPGrowth.
FPGrowth algorithm from pyspark (ML) requires dataframe as item sets:
+---+------------+
| id| items|
+---+------------+
| 0| [A, B, E]|
| 1|[A, B, C, E]|
| 2| [A, B]|
+---+------------+
But the data I have is in this format:
+---+---+---+---+---+---+
| id| A| B| C| D| E|
+---+---+---+---+---+---+
| 0| 1| 1| 0| 0| 1|
| 1| 1| 1| 1| 0| 1|
| 2| 1| 1| 0| 0| 0|
+---+---+---+---+---+---+
I attempted to solve it by replacing 1's with the column names and creating list from them but that did not work.
Is there a way to perform this conversion by using Spark dataframe functions?
Thank you very much!

Use udf:
from pyspark.sql.functions import udf, struct
#udf("array<string>")
def as_basket(row):
return [k for k, v in row.asDict().items() if v]
df.withColumn("basket", as_basket(struct(*df.columns[1:]))).show()

Related

Check if a column is consecutive with groupby in pyspark

I have a pyspark dataframe that looks like this:
import pandas as pd
foo = pd.DataFrame({'group': ['a','a','a','b','b','c','c','c'], 'value': [1,2,3,4,5,2,4,5]})
I would like to create a new binary column is_consecutive that indicates if the values in the value column are consecutive by group.
The output should look like this:
foo = pd.DataFrame({'group': ['a','a','a','b','b','c','c','c'], 'value': [1,2,3,4,5,2,4,5],
'is_consecutive': [1,1,1,1,1,0,0,0]})
How could I do that in pyspark?
You can use lag to compare values with the previous row and check if they are consecutive, then use min to determine whether all rows are consecutive in a given group.
from pyspark.sql import functions as F, Window
df2 = df.withColumn(
'consecutive',
F.coalesce(
F.col('value') - F.lag('value').over(Window.partitionBy('group').orderBy('value')) == 1,
F.lit(True)
).cast('int')
).withColumn(
'all_consecutive',
F.min('consecutive').over(Window.partitionBy('group'))
)
df2.show()
+-----+-----+-----------+---------------+
|group|value|consecutive|all_consecutive|
+-----+-----+-----------+---------------+
| c| 2| 1| 0|
| c| 4| 0| 0|
| c| 5| 1| 0|
| b| 4| 1| 1|
| b| 5| 1| 1|
| a| 1| 1| 1|
| a| 2| 1| 1|
| a| 3| 1| 1|
+-----+-----+-----------+---------------+
You can use lead and subtract the same with the existing value then find max of the window, once done , put a condition saying return 0 is max is >1 else return 1
w = Window.partitionBy("group").orderBy(F.monotonically_increasing_id())
(foo.withColumn("Diff",F.lead("value").over(w)-F.col("value"))
.withColumn("is_consecutive",F.when(F.max("Diff").over(w)>1,0).otherwise(1))
.drop("Diff")).show()
+-----+-----+--------------+
|group|value|is_consecutive|
+-----+-----+--------------+
| a| 1| 1|
| a| 2| 1|
| a| 3| 1|
| b| 4| 1|
| b| 5| 1|
| c| 2| 0|
| c| 4| 0|
| c| 5| 0|
+-----+-----+--------------+

Get all possible combinations recursively in an RDD in pyspark

I have made this algorithm, but with higher numbers looks like that doesn't work or its very slow, it will run in a cluster of big data(cloudera), so i think that i have to put the function into pyspark, any tip how improve it please
import pandas as pd import itertools as itts
number_list = [10953, 10423, 10053]
def reducer(nums): def ranges(n): print(n) return range(n, -1, -1)
num_list = list(map(ranges, nums)) return list(itts.product(*num_list))
data=pd.DataFrame(reducer(number_list)) print(data)
You can use crossJoin with DataFrame:
Here we have a simple example trying to compute the cross-product of three arrays,
i.e. [1,0], [2,1,0], [3,2,1,0]. Their cross-product should have 2*3*4 = 24 elements.
The code below shows how to achieve this.
from pyspark.sql import SparkSession
spark = SparkSession.builder.appName('test').getOrCreate()
df1 = spark.createDataFrame([(1,),(0,)], ['v1'])
df2 = spark.createDataFrame([(2,), (1,),(0,)], ['v2'])
df3 = spark.createDataFrame([(3,), (2,),(1,),(0,)], ['v3'])
df1.show()
df2.show()
df3.show()
+---+
| v1|
+---+
| 1|
| 0|
+---+
+---+
| v2|
+---+
| 2|
| 1|
| 0|
+---+
+---+
| v3|
+---+
| 3|
| 2|
| 1|
| 0|
+---+
df = df1.crossJoin(df2).crossJoin(df3)
print('----------- Total rows: ', df.count())
df.show(30)
----------- Total rows: 24
+---+---+---+
| v1| v2| v3|
+---+---+---+
| 1| 2| 3|
| 1| 2| 2|
| 1| 2| 1|
| 1| 2| 0|
| 1| 1| 3|
| 1| 1| 2|
| 1| 1| 1|
| 1| 1| 0|
| 1| 0| 3|
| 1| 0| 2|
| 1| 0| 1|
| 1| 0| 0|
| 0| 2| 3|
| 0| 2| 2|
| 0| 2| 1|
| 0| 2| 0|
| 0| 1| 3|
| 0| 1| 2|
| 0| 1| 1|
| 0| 1| 0|
| 0| 0| 3|
| 0| 0| 2|
| 0| 0| 1|
| 0| 0| 0|
+---+---+---+
Your computation is pretty big:
(10953+1)*(10423+1)*(10053+1)=1148010922784, about 1 trillion rows. I would suggest increase the numbers slowly, spark is not as fast as you think when it involves table joins.
Also, try use broadcast on all your initial DataFrames, i.e. df1, df2, df3. See if it helps.

Spark pairwise differences within groups

I have a spark dataframe, for the sake of argument lets take it to be:
val df = sc.parallelize(
Seq(("a",1,2),("a",1,4),("b",5,6),("b",10,2),("c",1,1))
).toDF("id","x","y")
+---+---+---+
| id| x| y|
+---+---+---+
| a| 1| 2|
| a| 1| 4|
| b| 5| 6|
| b| 10| 2|
| c| 1| 1|
+---+---+---+
I would like to compute all pairwise differences between entries in the dataframe with the same id and output the result to another dataframe. For a small dataframe I can accomplish this by:
df.crossJoin(
df.select(
(df.columns.map(x=>col(x).as("_"+x))):_*)
).where(
col("id")===col("_id")
).select(
col("id"),
(col("x")-col("_x")).as("dx"),
(col("y")-col("_y")).as("dy")
)
+---+---+---+
| id| dx| dy|
+---+---+---+
| c| 0| 0|
| b| 0| 0|
| b| -5| 4|
| b| 5| -4|
| b| 0| 0|
| a| 0| 0|
| a| 0| -2|
| a| 0| 2|
| a| 0| 0|
+---+---+---+
However, for large dataframes this isn't a reasonable approach as the crossJoin will mostly produce data that will be discarded by the subsequent where clause.
I'm still pretty new to spark and groupBy seemed like a natural place to start looking, but I can't figure out how to accomplish this using groupBy. Any help would be welcome.
I would eventually like to remove redundancy, for instance in:
val df1 = df.withColumn("idx",monotonicallyIncreasingId)
df.crossJoin(
df.select(
(df.columns.map(x=>col(x).as("_"+x))):_*)
).where(
col("id")===col("_id") && col("idx") < col("_idx")
).select(
col("id"),
(col("x")-col("_x")).as("dx"),
(col("y")-col("_y")).as("dy")
)
+---+---+---+
| id| dx| dy|
+---+---+---+
| b| -5| 4|
| a| 0| -2|
+---+---+---+
But if its easier to accomplish this with redundancy, then I can live with that.
This is not an uncommon transformation to perform in ML so I thought something out of MLlib might be appropriate, but again I haven't found anything there either.
Can be achived via inner join, result the same as expected:
df.alias("left").join(df.alias("right"),"id")
.select($"id",
($"left.x"-$"right.x").alias("dx"),
($"left.y"-$"right.y").alias("dy"))

Saving iteratively to a new DataFrame in Pyspark

I'm performing computations based on 3 different PySpark DataFrames.
This script works in the sense that it performs the computation as it should, however, I struggle with working properly with the results of said computation.
import sys
import numpy as np
from pyspark import SparkConf, SparkContext, SQLContext
sc = SparkContext("local")
sqlContext = SQLContext(sc)
# Dummy Data
df = sqlContext.createDataFrame([[0,1,0,0,0],[1,1,0,0,1],[0,0,1,0,1],[1,0,1,1,0],[1,1,0,0,0]], ['p1', 'p2', 'p3', 'p4', 'p5'])
df.show()
+---+---+---+---+---+
| p1| p2| p3| p4| p5|
+---+---+---+---+---+
| 0| 1| 0| 0| 0|
| 1| 1| 0| 0| 1|
| 0| 0| 1| 0| 1|
| 1| 0| 1| 1| 0|
| 1| 1| 0| 0| 0|
+---+---+---+---+---+
# Values
values = sqlContext.createDataFrame([(0,1,'p1'),(None,1,'p2'),(0,0,'p3'),(None,0, 'p4'),(1,None,'p5')], ('f1', 'f2','index'))
values.show()
+----+----+-----+
| f1| f2|index|
+----+----+-----+
| 0| 1| p1|
|null| 1| p2|
| 0| 0| p3|
|null| 0| p4|
| 1|null| p5|
+----+----+-----+
# Weights
weights = sqlContext.createDataFrame([(4,3,'p1'),(None,1,'p2'),(2,2,'p3'),(None, 3, 'p4'),(3,None,'p5')], ('f1', 'f2','index'))
weights.show()
+----+----+-----+
| f1| f2|index|
+----+----+-----+
| 4| 3| p1|
|null| 1| p2|
| 2| 2| p3|
|null| 3| p4|
| 3|null| p5|
+----+----+-----+
# Function: it sums the vector W for the values of Row equal to the value of V and then divide by the length of V.
# If there a no similarities between Row and V outputs 0
def W_sum(row,v,w):
if len(w[row==v])>0:
return float(np.sum(w[row==v])/len(w))
else:
return 0.0
For each of the columns and for each row in Data, the above function is applied.
# We iterate over the columns of Values (except the last one called index)
for val in values.columns[:-1]:
# we filter the data to work only with the columns that are defined for the selected Value
defined_col = [i[0] for i in values.where(F.col(val) >= 0).select(values.index).collect()]
# we select only the useful columns
df_select= df.select(defined_col)
# we retrieve the reference value and weights
V = np.array(values.where(values.index.isin(defined_col)).select(val).collect()).flatten()
W = np.array(weights.where(weights.index.isin(defined_col)).select(val).collect()).flatten()
W_sum_udf = F.udf(lambda row: W_sum(row, V, W), FloatType())
df_select.withColumn(val, W_sum_udf(F.array(*(F.col(x) for x in df_select.columns))))
This gives :
+---+---+---+---+---+---+
| p1| p2| p3| p4| p5| f1|
+---+---+---+---+---+---+
| 0| 1| 0| 0| 0|2.0|
| 1| 1| 0| 0| 1|1.0|
| 0| 0| 1| 0| 1|2.0|
| 1| 0| 1| 1| 0|0.0|
| 1| 1| 0| 0| 0|0.0|
+---+---+---+---+---+---+
It added the column to the sliced DataFrame as I asked it to. The problem is that I would rather collect the data into a new one that I could access at the end to consult the results.
It it possible to grow (somewhat efficiently) a DataFrame in PySpark as I would with pandas?
Edit to make my goal clearer:
Ideally I would get a DataFrame with the just the computed columns, like this:
+---+---+
| f1| f2|
+---+---+
|2.0|1.0|
|1.0|2.0|
|2.0|0.0|
|0.0|0.0|
|0.0|2.0|
+---+---+
There are some issues with your question...
First, your for loop will produce an error, since df_select in the last line is nowhere defined; there is also no assignment at the end (what does it produce?).
Assuming that df_select is actually your subsubsample dataframe, defined some lines before, and that your last line is something like
new_df = subsubsample.withColumn(val, W_sum_udf(F.array(*(F.col(x) for x in subsubsample.columns))))
then your problem starts getting more clear. Since
values.columns[:-1]
# ['f1', 'f2']
the result of the whole loop would be just
+---+---+---+---+---+
| p1| p2| p3| p4| f2|
+---+---+---+---+---+
| 0| 1| 0| 0|1.0|
| 1| 1| 0| 0|2.0|
| 0| 0| 1| 0|0.0|
| 1| 0| 1| 1|0.0|
| 1| 1| 0| 0|2.0|
+---+---+---+---+---+
i.e. with only the column f2 included (natural, since the results with f1 are simply overwritten).
Now, as I said, assuming that the situation is like this, and that your problem is actually how to have both columns f1 & f2 together rather in different dataframes, you can just forget subsubsample and append columns to your initial df, possibly dropping afterwards the unwanted ones:
init_cols = df.columns
init_cols
# ['p1', 'p2', 'p3', 'p4', 'p5']
new_df = df
for val in values.columns[:-1]:
# we filter the data to work only with the columns that are defined for the selected Value
defined_col = [i[0] for i in values.where(F.col(val) >= 0).select(values.index).collect()]
# we retrieve the reference value and weights
V = np.array(values.where(values.index.isin(defined_col)).select(val).collect()).flatten()
W = np.array(weights.where(weights.index.isin(defined_col)).select(val).collect()).flatten()
W_sum_udf = F.udf(lambda row: W_sum(row, V, W), FloatType())
new_df = new_df.withColumn(val, W_sum_udf(F.array(*(F.col(x) for x in defined_col)))) # change here
# drop initial columns:
for i in init_cols:
new_df = new_df.drop(i)
The resulting new_df will be:
+---+---+
| f1| f2|
+---+---+
|2.0|1.0|
|1.0|2.0|
|2.0|0.0|
|0.0|0.0|
|0.0|2.0|
+---+---+
UPDATE (after comment): To force the division in your W_sum function to be a float, use:
from __future__ import division
new_df now will be:
+---------+----+
| f1| f2|
+---------+----+
| 2.0| 1.5|
|1.6666666|2.25|
|2.3333333|0.75|
| 0.0|0.75|
|0.6666667|2.25|
+---------+----+
with f2 exactly as it should be according to your comment.

sort the most frequent combinations of two columns in descending order

I have dataframe that looks like this
+---+---+---
| A| B| C|
+---+---+---
| 1| 3| 1|
| 2| 1| 1|
| 2| 3| 1|
| 1| 2| 1|
| 3| 1| 1|
| 1| 2| 1|
| 2| 1| 1|
| 1| 3| 1|
| 1| 2| 1|
+---+---+---
I want to reduce the data to only the most frequent combinations of two columns (A and B) sorted in descending order
The output should look like
+---+---+-----+
| A| B|count|
+---+---+-----+
| 1| 2| 3|
| 2| 1| 2|
+---+---+-----+
I wrote this code but it does not sort
import pandas as pd
import numpy as np
data=pd.read_csv("file.csv",sep=',')
gps = data[['A','B','C']]
gps1=gps.groupby(['A','C'])
gps1=gps1.count()
gps1.columns=['count']
gps1.sort_values(['count'],ascending=False)
print(gps1)
use nlargest
gps.groupby(['A', 'B']).size().nlargest(2)
A B
1 2 3
3 2
dtype: int64
or
gps.groupby(['A', 'B']).size().nlargest(2).reset_index(name='count')
You need to assign the result of sort_values() back into gps1 or use `inplace=True:
gps1.sort_values(['count'],ascending=False, inplace=True)
or
gps1 = gps1.sort_values(['count'],ascending=False)
As stated in the documentation of sort_values, inplace is by default set to False

Resources