I am trying to modify Resnet50 with my custom data as follows:
X = [[1.85, 0.460,... -0.606] ... [0.229, 0.543,... 1.342]]
y = [2, 4, 0, ... 4, 2, 2]
X is a feature vector of length 2000 for 784 images. y is an array of size 784 containing the binary representation of labels.
Here is the code:
def __classifyRenet(self, X, y):
image_input = Input(shape=(2000,1))
num_classes = 5
model = ResNet50(weights='imagenet',include_top=False)
model.summary()
last_layer = model.output
# add a global spatial average pooling layer
x = GlobalAveragePooling2D()(last_layer)
# add fully-connected & dropout layers
x = Dense(512, activation='relu',name='fc-1')(x)
x = Dropout(0.5)(x)
x = Dense(256, activation='relu',name='fc-2')(x)
x = Dropout(0.5)(x)
# a softmax layer for 5 classes
out = Dense(num_classes, activation='softmax',name='output_layer')(x)
# this is the model we will train
custom_resnet_model2 = Model(inputs=model.input, outputs=out)
custom_resnet_model2.summary()
for layer in custom_resnet_model2.layers[:-6]:
layer.trainable = False
custom_resnet_model2.layers[-1].trainable
custom_resnet_model2.compile(loss='categorical_crossentropy',
optimizer='adam',metrics=['accuracy'])
clf = custom_resnet_model2.fit(X, y,
batch_size=32, epochs=32, verbose=1,
validation_data=(X, y))
return clf
I am calling to function as:
clf = self.__classifyRenet(X_train, y_train)
It is giving an error:
ValueError: Error when checking input: expected input_24 to have 4 dimensions, but got array with shape (785, 2000)
Please help. Thank you!
1. First, understand the error.
Your input does not match the input of ResNet, for ResNet, the input should be (n_sample, 224, 224, 3) but you are having (785, 2000). From your question, you have 784 images with array of size 2000, which doesn't really align with the original ResNet50 input shape of (224 x 224) no matter how you reshape it. That means you cannot use the ResNet50 directly with your data. The only thing you did in your code is to take the last layer of ResNet50 and added you output layer to align with your output class size.
2. Then, what you can do.
If you insist to use the ResNet architecture, you will need to change the input layer rather than output layer. Also, you will need to reshape your image data to utilize the convolution layers. That means, you cannot have it in a (2000,) array, but need to be something like (height, width, channel), just like what ResNet and other architectures are doing. Of course you will also need to change the output layer as well just like you did so that you are predicting for your classes. Try something like:
model = ResNet50(input_tensor=image_input_shape, include_top=True,weights='imagenet')
This way, you can specify customized input image shape. You can check the github code for more information (https://github.com/keras-team/keras/blob/master/keras/applications/resnet50.py). Here's part of the docstring:
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)` (with `channels_last` data format)
or `(3, 224, 224)` (with `channels_first` data format).
It should have exactly 3 inputs channels,
and width and height should be no smaller than 197.
E.g. `(200, 200, 3)` would be one valid value.
Related
I try to create image embeddings for the purpose of deep ranking using a triplet loss function. The idea is that we can take a pretrained CNN (e.g. resnet50 or vgg16), remove the FC layers and add an L2 normalization function to retrieve unit vectors which can then be compared via a distance metric (e.g. cosine similarity). As far as I understand the predicted vectors that come out of a pretrained CNN are not optimal, but are a good start. By adding the triplet loss function we can re-train the network to keep similar pictures 'close' to each other and different pictures 'far' apart in the feature space. Inspired by this notebook , I tried to setup the following code, but I get an error ValueError: The name "conv1_pad" is used 3 times in the model. All layer names should be unique..
# Anchor, Positive and Negative are numpy arrays of size (200, 256, 256, 3), same for the test images
pic_size=256
def shared_dnn(inp):
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(3, pic_size, pic_size),
input_tensor=inp)
x = base_model.output
x = Flatten()(x)
x = Lambda(lambda x: K.l2_normalize(x,axis=1))(x)
for layer in base_model.layers[15:]:
layer.trainable = False
return x
anchor_input = Input((3, pic_size,pic_size ), name='anchor_input')
positive_input = Input((3, pic_size,pic_size ), name='positive_input')
negative_input = Input((3, pic_size,pic_size ), name='negative_input')
encoded_anchor = shared_dnn(anchor_input)
encoded_positive = shared_dnn(positive_input)
encoded_negative = shared_dnn(negative_input)
merged_vector = concatenate([encoded_anchor, encoded_positive, encoded_negative], axis=-1, name='merged_layer')
model = Model(inputs=[anchor_input,positive_input, negative_input], outputs=merged_vector)
#ValueError: The name "conv1_pad" is used 3 times in the model. All layer names should be unique.
model.compile(loss=triplet_loss, optimizer=adam_optim)
model.fit([Anchor,Positive,Negative],
y=Y_dummy,
validation_data=([Anchor_test,Positive_test,Negative_test],Y_dummy2), batch_size=512, epochs=500)
I am new to keras and I am not quite sure how to solve this. The author in the link above creates his own CNN from scratch, but I would like to build it upon resnet (or vgg16). How can I configure ResNet50 to use a triplet loss function (in the link above you find also the source code for the triplet loss function).
In your ResNet50 definition, you've written
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=(3, pic_size, pic_size), input_tensor=inp)
Remove the input_tensor argument. Change input_shape=inp.
If you're using TF backend as you mentioned the input should be (256, 256, 3), then your input should be (pic_size, pic_size, 3).
def shared_dnn(inp):
base_model = ResNet50(weights='imagenet', include_top=False, input_shape=inp)
x = base_model.output
x = Flatten()(x)
x = Lambda(lambda x: K.l2_normalize(x,axis=1))(x)
for layer in base_model.layers[15:]:
layer.trainable = False
return x
img_shape=(256, 256, 3)
anchor_input = Input(img_shape, name='anchor_input')
positive_input = Input(img_shape, name='positive_input')
negative_input = Input(img_shape, name='negative_input')
encoded_anchor = shared_dnn(anchor_input)
encoded_positive = shared_dnn(positive_input)
encoded_negative = shared_dnn(negative_input)
merged_vector = concatenate([encoded_anchor, encoded_positive, encoded_negative], axis=-1, name='merged_layer')
model = Model(inputs=[anchor_input,positive_input, negative_input], outputs=merged_vector)
model.compile(loss=triplet_loss, optimizer=adam_optim)
model.fit([Anchor,Positive,Negative],
y=Y_dummy,
validation_data=([Anchor_test,Positive_test,Negative_test],Y_dummy2), batch_size=512, epochs=500)
The model plot is as follows:
model_plot
I have training data in the form of numpy arrays, that I will use in ConvLSTM.
Following are dimensions of array.
trainX = (5000, 200, 5) where 5000 are number of samples. 200 is time steps per sample, and 8 is number of features per timestep. (samples, timesteps, features).
out of these 8 features, 3 features remains the same throghout all timesteps in a sample (In other words, these features are directly related to samples). for example, day of the week, month number, weekday (these changes from sample to sample). To reduce the complexity, I want to keep these three features separate from initial training set and merge them with the output of convlstm layer before applying dense layer for classication (softmax activiation). e,g
Intial training set dimension would be (7000, 200, 5) and auxiliary input dimensions to be merged would be (7000, 3) --> because these 3 features are directly related to sample. How can I implement this using keras?
Following is my code that I write using Functional API, but don't know how to merge these two inputs.
#trainX.shape=(7000,200,5)
#trainy.shape=(7000,4)
#testX.shape=(3000,200,5)
#testy.shape=(3000,4)
#trainMetadata.shape=(7000,3)
#testMetadata.shape=(3000,3)
verbose, epochs, batch_size = 1, 50, 256
samples, n_features, n_outputs = trainX.shape[0], trainX.shape[2], trainy.shape[1]
n_steps, n_length = 4, 50
input_shape = (n_steps, 1, n_length, n_features)
model_input = Input(shape=input_shape)
clstm1 = ConvLSTM2D(filters=64, kernel_size=(1,3), activation='relu',return_sequences = True)(model_input)
clstm1 = BatchNormalization()(clstm1)
clstm2 = ConvLSTM2D(filters=128, kernel_size=(1,3), activation='relu',return_sequences = False)(clstm1)
conv_output = BatchNormalization()(clstm2)
metadata_input = Input(shape=trainMetadata.shape)
merge_layer = np.concatenate([metadata_input, conv_output])
dense = Dense(100, activation='relu', kernel_regularizer=regularizers.l2(l=0.01))(merge_layer)
dense = Dropout(0.5)(dense)
output = Dense(n_outputs, activation='softmax')(dense)
model = Model(inputs=merge_layer, outputs=output)
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
history = model.fit([trainX, trainMetadata], trainy, validation_data=([testX, testMetadata], testy), epochs=epochs, batch_size=batch_size, verbose=verbose)
_, accuracy = model.evaluate(testX, testy, batch_size=batch_size, verbose=0)
y = model.predict(testX)
but I am getting Value error at merge_layer statement. Following is the ValueError
ValueError: zero-dimensional arrays cannot be concatenated
What you are saying can not be done using the Sequential mode of Keras.
You need to use the Model class API Guide to Keras Model.
With this API you can build the complex model you are looking for
Here you have an example of how to use it: How to Use the Keras Functional API for Deep Learning
I am trying to feed a sequence with 20 featuresto an LSTM network as shown in the code. But I get an error that my Input0 is incompatible with LSTM input. Not sure how to change my layer structure to fit the data.
def build_model(features, aux1=None, aux2=None):
# create model
features[0] = np.asarray(features[0])
main_input = Input(shape=features[0].shape, dtype='float32', name='main_input')
main_out = LSTM(40, activation='relu')
aux1_input = Input(shape=(len(aux1[0]),), dtype='float32', name='aux1_input')
aux1_out = Dense(len(aux1[0]))(aux1_input)
aux2_input = Input(shape=(len(aux2[0]),), dtype='float32', name='aux2_input')
aux2_out = Dense(len(aux2[0]))(aux2_input)
x = concatenate([aux1_out, main_out, aux2_out])
x = Dense(64, activation='relu')(x)
x = Dropout(0.5)(x)
output = Dense(1, activation='sigmoid', name='main_output')(x)
model = Model(inputs=[aux1_input, aux2_input, main_input], outputs= [output])
return model
Features variable is an array of shape (1456, 20) I have 1456 days and for each day I have 20 variables.
Your main_input should be of shape (samples, timesteps, features)
and then you should define main_input like this:
main_input = Input(shape=(timesteps,)) # for stateless RNN (your one)
or main_input = Input(batch_shape=(batch_size, timesteps,)) for stateful RNN (not the one you are using in your example)
if your features[0] is a 1-dimensional array of various features (1 timestep), then you also have to reshape features[0] like this:
features[0] = np.reshape(features[0], (1, features[0].shape))
and then do it to features[1], features[2] etc
or better reshape all your samples at once:
features = np.reshape(features, (features.shape[0], 1, features.shape[1]))
LSTM layers are designed to work with "sequences".
You say your sequence has 20 features, but how many time steps does it have?? Do you mean 20 time steps instead?
An LSTM layer requires input shapes such as (BatchSize, TimeSteps, Features).
If it's the case that you have 1 feature in each of the 20 time steps, you must shape your data as:
inputData = someData.reshape(NumberOfSequences, 20, 1)
And the Input tensor should take this shape:
main_input = Input((20,1), ...) #yes, it ignores the batch size
I'm trying to build a convolutional neural network for my dataset. My training dataset has 1209 examples of 800 features each.
Here's what part of the code looks like :
model = Sequential()
model.add(Conv1D(64, 3, activation='linear', input_shape=(1209, 800)))
model.add(GlobalMaxPooling1D())
model.add(Dense(1, activation='linear'))
model.compile(loss=loss_type, optimizer=optimizer_type, metrics=[metrics_type])
model.fit(X, Y, validation_data=(X2,Y2),epochs = nb_epochs,
batch_size = batch_size,shuffle=True)
When I compile this code, I get the following error :
Error when checking input: expected conv1d_25_input to have 3 dimensions,
but got array with shape (1209, 800)
So I add a dimension, here's what I do :
X = np.expand_dims(X, axis=0)
X2 = np.expand_dims(X2, axis=0)
And then I get this error :
ValueError: Input arrays should have the same number of samples as target arrays.
Found 1 input samples and 1209 target samples.
My training data has now a shape like this (1, 1209, 800), should it be something else ?
Thanks a lot for reading this.
Instead of expanding the dimensions on X at axis 0, you should expand on axis 2. Thus, rather than X = np.expand_dims(X, axis=0), you need X = np.expand_dims(X, axis=2).
Afterwards, the shape of X should be (1209, 800, 1), and you should then specify input_shape=(800, 1) in your first layer.
I have a single training batch of 600 sequential points (x(t), y(t)) with x(t) being a 25 dimensional vector and y(t) being my target (1 dim). I would like to train an LSTM to predict how the series would continue given a few additional x(t) [t> 600]. I tried the following model:
model = Sequential()
model.add(LSTM(128, input_shape = (600,25), batch_size = 1, activation= 'tanh', return_sequences = True))
model.add(Dense(1, activation='linear'))
model.compile(loss='mean_squared_error', optimizer='adam')
model.fit(trainX, trainY, epochs=20 ,verbose=2) prediction
prediction = model.predict(testX, batch_size = 1)
Fitting works fine, but I keep getting the following error at the prediction step:
Error when checking : expected lstm_46_input to have shape (1, 600, 25) but got array with shape (1, 10, 25)
What am I missing?
Here are my shapes:
trainX.shape = (1,600,25)
trainY.shape = (1,600,1)
testX.shape = (1,10,25)
According to Keras documentation input of LSTM (or any RNN) layers should be of shape (batch_size, timesteps, input_dim) where your input shape is
trainX.shape = (1,600,25)
So it means for training you are passing only one data with 600 timesteps and 25 features per timestep. But I got a feeling that you actually have 600 training data each having 25 timesteps and 1 feature per timestep. I guess your input shape (trainX) should be 600 x 25 x 1. Train target (trainY) should be 600 x 1 If my assumption is right then your test data should be of shape 10 x 25 x 1. First LSTM layer should be written as
model.add(LSTM(128, input_shape = (25,1), batch_size = 1, activation= 'tanh', return_sequences = False))
If your training data is in fact (1,600,25) what this means is you are unrolling the LSTM feedback 600 times. The first input has an impact on the 600th input. If this is what you want, you can use the Keras function "pad_sequences" to add append zeros to the test matrix so it has the shape (1,600,25). The network should predict zeros and you will need to add 590 zeros to your testY.
If you only want say 10 previous timesteps to affect your current Y prediction, then you will want to turn your trainX into shape (590,10,25). The input line will be something like:
model.add(LSTM(n_hid, stateful=True, return_sequences=False, batch_input_shape=(1,nTS,x_train.shape[2])))
The processing to get it in the form you want could be something like this:
def formatTS(XX, yy, window_length):
x_train = np.zeros((XX.shape[0]-window_length,window_length,XX.shape[1]))
for i in range(x_train.shape[0]):
x_train[i] = XX[i:i+window_length,:]
y_train = yy[window_length:]
return x_train, y_train
Then your testing will work just fine since it is already in the shape (1,10,25).