Multiclass Classification for ANN - python-3.x

I am using ANN for Multiclass Classification(12 classes) in Python. However i am getting errors. Here is the code snippet:
import keras
from keras.models import Sequential
from keras.layers import Dense
# Initialising the ANN
# Initialising the ANN
classifier = Sequential()
# Adding the input layer and the first hidden layer
classifier.add(Dense(units = 8, kernel_initializer = 'uniform', activation = 'relu', input_dim = 4))
# Adding the second hidden layer
classifier.add(Dense(units = 8, kernel_initializer = 'uniform', activation = 'relu'))
# Adding the output layer
classifier.add(Dense(units = 13, kernel_initializer = 'uniform', activation = 'softmax'))
# Compiling the ANN
classifier.compile(optimizer = 'adam', loss = 'sparse_categorical_crossentropy', metrics = ['accuracy'])
# Fitting the ANN to the Training set
classifier.fit(X_train, y_train, batch_size =200 , epochs = 100)
# Predicting the Test set results
y_pred = classifier.predict(X_test)
# Making the Confusion Matrix
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred)
The program runs all the way until running the neural code and also finds the y_pred. After that i get this error i.e the confusion matrix is not formed.
The error:
ValueError: Classification metrics can't handle a mix of multiclass and continuous-multioutput targets

from sklearn.metrics import confusion_matrix
y_pred = classifier.predict(X_test)
predictions = np.argmax(y_pred, axis=-1)
cm = confusion_matrix(y_test, y_pred)
I hope it will resolve your problem

from sklearn.metrics import confusion_matrix
from sklearn.preprocessing import LabelEncoder
y_pred = classifier.predict(X_test)
predictions = np.argmax(y_pred, axis=-1)
label_encoder = LabelEncoder().fit(y_test)
label_y = label_encoder.transform(y_test)
cm = confusion_matrix(label_y, predictions)

Related

Why is there no improvement in a categorical data time series model?

I built a simple categorical time series model to predict the next number of a random sequence, but the accuracy hardly moved even I trained it for 10000 epochs. The validation loss started to take off after a few hundred epochs. Could anyone make suggestions for improvement? Here's the model:
import os
import sys
import pandas as pd
import numpy as np
from sklearn.preprocessing import OneHotEncoder
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM
DEVICE = 'CPU'
if DEVICE == 'CPU':
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
else:
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
print(tf.test.gpu_device_name())
TOTAL_CATALOG=4
POSSIBLE_OUTCOME_COL=4
LOOK_BACK_WINDOW=1
TRAINING_DATA_RATIO=0.8
TRAINING_EPOCHS=10000
sys.path.insert(0, '/DataScience/MyModules')
from m6data import getDrawData, series_to_supervised, Split_data, get_all_categories
def get_all_categories_local(last_combination):
all_category = np.arange(1, last_combination+1)
return all_category.reshape(1,all_category.shape[0])
All_categories=get_all_categories_local(TOTAL_CATALOG)
data_sequence = [1,1,2,4,2,3,1,2,3,3,4,1,2,3,4,2,2,3,1,3]
raw_df = pd.DataFrame(data_sequence, columns=['NE'])
values = raw_df.values
# 05-Apr-2022: One-Hot Encoding
oh_encoder = OneHotEncoder(categories=All_categories, sparse=False)
encoded_input = oh_encoder.fit_transform(values)
FEATURES = encoded_input.shape[1]
POSSIBLE_OUTCOME_COL = FEATURES
draw_reframe = series_to_supervised(encoded_input, LOOK_BACK_WINDOW,1)
train, test = Split_data(draw_reframe, TRAINING_DATA_RATIO)
# Total input = all possible One-Hot Encoding outcome * number of look-back samples.
ALL_INPUT = POSSIBLE_OUTCOME_COL * LOOK_BACK_WINDOW
# split into input and outputs
train_X, train_y = train.iloc[:,:ALL_INPUT], train.iloc[:,ALL_INPUT:]
test_X, test_y = test.iloc[:,:ALL_INPUT], test.iloc[:,ALL_INPUT:]
train_X = train_X.values.reshape((train_X.shape[0], LOOK_BACK_WINDOW , FEATURES))
test_X = test_X.values.reshape((test_X.shape[0], LOOK_BACK_WINDOW, FEATURES))
print(train_X.shape, train_y.shape)
print(test_X.shape, test_y.shape)
def create_model():
model = Sequential()
model.add(LSTM(10,
return_sequences=False,
input_shape=(train_X.shape[1], train_X.shape[2]),
activation='relu'
)
)
#model.add(LSTM(20))
model.add(Dense(units=train_y.shape[1], activation='softmax'))
model.compile(optimizer = tf.keras.optimizers.Adam(learning_rate=0.00005),
loss = 'categorical_crossentropy',
metrics=['accuracy'])
return model
model=create_model()
history = model.fit(
train_X, train_y,
epochs=TRAINING_EPOCHS,
batch_size=8,
validation_data=(test_X, test_y),
verbose=1,
)
Here are the plots of accuracies and losses (red=training, blue=validation).
Accuracies
Losses
Thank you in advance for any suggestions.
Update (13-Jun-2022)
I changed my model to the following
def create_model():
model = Sequential()
model.add(LSTM(50,
return_sequences=True,
input_shape=(train_X.shape[1], train_X.shape[2]),
activation='relu'
)
)
model.add(LSTM(units=1000, kernel_regularizer=regularizers.l1(0.05), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units=1000, kernel_regularizer=regularizers.l1(0.05), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units=1000, kernel_regularizer=regularizers.l1(0.05), return_sequences=True))
model.add(Dropout(0.2))
model.add(LSTM(units=1000, kernel_regularizer=regularizers.l1(0.05), activation='relu'))
model.add(Dropout(0.3))
model.add(BatchNormalization())
model.add(Dense(1000))
model.add(Dense(units=train_y.shape[1], activation='softmax'))
model.compile(optimizer = tf.keras.optimizers.SGD(learning_rate=1e-2, nesterov=True),
#tf.keras.optimizers.Adam(learning_rate=0.001),
loss = 'categorical_crossentropy',
metrics=['accuracy'])
return model
reduce_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.2,
patience=20,min_lr=1e-10)
early_stop = EarlyStopping(monitor='loss', patience=100)
history = model.fit(
train_X, train_y,
epochs=TRAINING_EPOCHS,
batch_size=16,
validation_split=0.1,
validation_data=(test_X, test_y),
verbose=1,
shuffle=False,
callbacks=([reduce_lr], [early_stop])
Accuracy was bouncing around and Val_accuracy was zero all the way. The loss and val_loss were almost the same and dropping together.
Can anyone advise what I can do in this scenario?

ValueError: Dimensions must be equal (keras)

I'm trying to train an autoencoder but have problems in reshaping my X_train to fit it to my model model().
from tensorflow import keras
from keras.layers import *
from keras.models import Model
from keras.models import Sequential
from keras.optimizers import Adam
from keras.optimizers import RMSprop
from keras.utils import plot_model
X_train = np.array(X_train, dtype=np.float)
X_test =np.array(X_train, dtype=np.float)
X_train = X_train.reshape(len(X_train), 100,1)
X_test = X_test.reshape(len(X_test), 100,1)
#inputs = Input(shape=(230, 1,100))
epoch = 100
batch = 128
def model():
m = Sequential()
# ##m.add(Reshape((,)))
m.add(Flatten())
m.add(Dense(512, activation='relu'))
m.add(Dense(128, activation = 'relu'))
m.add(Dense(2, activation = 'linear'))
m.add(Dense(128, activation = 'relu'))
m.add(Dense(512, activation = 'relu'))
m.add(Dense(784, activation = 'sigmoid'))
m.compile(loss='mean_squared_error', optimizer = 'rmsprop', metrics = ['accuracy'])
# Fit data to model m
m.fit(X_train, X_train, batch_size = batch, epochs = epoch)
m.summary()
#score = m.evaluate(X_test, Y_test, verbose = 0)
#print('Test loss:' score[0])
#print('Test accuracy:', score[1])
#m.summary()
mod = model()
The of dimension of my data is the following:
X_train = (523, 100,1)
X_test = (523, 100,1)
To fix your issue, change the following:
X_train = X_train.reshape((-1, 100))
X_test = X_test.reshape((-1, 100))
Delete the Flatten layer and use 100 neurons for the last layer as stated in the comments.

why is different between model.evaluate() and computed loss by myself based on model.predict()?

I am running neural network by keras. There is my code:
import numpy as np
from keras import Model
from keras.models import Sequential
from keras.layers import Dense
from keras import backend as K
def mean_squared_error(y_true, y_pred):
return K.mean(K.square(y_pred - y_true),axis=-1)
np.random.seed(1)
Train_X = np.random.randint(low=0,high=100,size = (50,5))
Train_Y = np.matmul(Train_X,np.arange(10).reshape(5,2))+np.random.randint(low=0,high=10,size=(50,2))
Test_X = np.random.randint(low=0,high=100,size = (10,5))
Test_Y = np.matmul(Test_X,np.arange(10).reshape(5,2))+np.random.randint(low=0,high=10,size=(10,2))
model = Sequential()
model.add(Dense(4,activation = 'relu'))
model.add(Dense(2,activation='relu'))
model.add(Dense(2,activation='relu'))
model.add(Dense(2))
model.compile(loss=mean_squared_error, optimizer='adam', metrics=['mae'])
history = model.fit(Train_X, Train_Y, epochs=100, batch_size=5,validation_data = (Test_X, Test_Y))
loss1 = model.evaluate(Test_X,Test_Y)
loss2 = history.history['val_loss'][99]
y_pred = model.predict(Test_X)
y_true = Test_Y
loss3 = np.mean(np.square(y_pred-y_true))
I find that loss1 is the same as loss2 but is different with loss3. So i feel so confused. Could someone tell me why?
This is possibly due to different dtypes for Test_Y and y_pred. Keras tries to automatically take care of dtype mismatches for you, so it is possible that Test_Y is a float64 and y_pred is a float32. If that is indeed the case, try converting one of their dtypes for the loss3 calculation and see if the values match.
y_pred = model.predict(Test_X)
y_true = Test_Y.astype(np.float32)
loss3 = np.mean(np.square(y_pred-y_true))

Make new predictions with a trained ANN - Keras

I'm new to the world of ANN and I was wondering, how do I pass a new dataset, possible a new csv, into the model that I alredy trained? I understand, for instance, that:
model.predict()
only accept arrays, and those arrays have to be of the same shape in order to work. So, how do I pass a complete new csv to generate predictions?
Here is my code, I know that probably it's gonna be a mess, but I'm working on it.
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
# Importing the dataset
dataset = pd.read_csv('Prova_1.csv')
dataset = dataset[np.isfinite(dataset['ID'])]
X = dataset.iloc[:, 3:6].values
y = dataset.iloc[:, 6].values
# Encoding
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X_1 = LabelEncoder()
X[:, 0] = labelencoder_X_1.fit_transform(X[:, 0])
labelencoder_X_2 = LabelEncoder()
X[:, 2] = labelencoder_X_2.fit_transform(X[:, 2])
onehotencoder = OneHotEncoder(categorical_features = [2])
X = onehotencoder.fit_transform(X).toarray()
X = X[:, 1:]
# Splitting
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
# Feature Scaling
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)
#ANN
import keras
from keras.models import Sequential
from keras.layers import Dense
# Initialising the ANN
classifier = Sequential()
# Adding the input layer and the first hidden layer
classifier.add(Dense(units = 27, kernel_initializer = 'uniform', activation = 'relu', input_dim = 55))
# Adding the second hidden layer
classifier.add(Dense(units = 27, kernel_initializer = 'uniform', activation = 'relu'))
# Adding the output layer
classifier.add(Dense(units = 1, kernel_initializer = 'uniform', activation = 'sigmoid'))
# Compiling the ANN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# Fitting the ANN to the Training set
classifier.fit(X_train, y_train, batch_size = 1, epochs = 100)
# Prediction
y_pred = classifier.predict(X_test)
y_pred = (y_pred > 0.5)
You need to do all the preprocessing operations to train data for the new data. Because the model trained over your input shape and input features. Make sure your input shape of your input data same as before, unless it will not work.

Keras Conv1D for Time Series

I am just a novice in area of deep learning.
I made my first basic attempt with Keras Conv1D. Not sure what I did and whether I did it right. My input data is simply total sales by every week (total of 313 weeks), for stores across US and with a time step of 1.
Here is my code:
from pandas import read_csv
import matplotlib.pyplot as plt
import numpy
from keras.datasets import imdb
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
def create_dataset(dataset, look_back=1):
    dataX, dataY = [], []
    for i in range(len(dataset)-look_back):
        a = dataset[i:(i+look_back), 0]
        dataX.append(a)
        dataY.append(dataset[i + look_back, 0])
    return numpy.array(dataX), numpy.array(dataY)
seed = 7
numpy.random.seed(seed)
dataframe = read_csv('D:/MIS793/Dataset/Academic Dataset External 2/Python scripts/totalsale _byweek.csv', usecols=[1], engine='python')
plt.plot(dataframe)
plt.show()
dataset = dataframe.values
dataset = dataset.astype('float32')
# normalize the dataset
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
# reshape into X=t and Y=t+1
look_back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
trainX = trainX.reshape(trainX.shape[0], trainX.shape[1], 1).astype('float32')
testX = testX.reshape(testX.shape[0], testX.shape[1], 1).astype('float32')
model = Sequential()
model.add(Conv1D(filters=10, kernel_size=1, padding='same', strides=1, activation='relu',input_shape=(1,1)))
model.add(MaxPooling1D(pool_size=1))
model.add(Flatten())
model.add(Dense(250, activation='relu'))
model.add(Dense(1, activation='linear'))
model.compile(loss='mse', optimizer='adam', metrics=['mae'])
print(model.summary())
model.fit(trainX, trainY, validation_data=(testX, testY), epochs=10, batch_size=100)
scores = model.evaluate(testX, testY, verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))
Not sure about few things here:
Reshaping of trainX and testX.
Value of kernel_size and input_shape
My idea here is it's just one vector of sales value. 10 filters, each of size 1 move from one value to another. Input shape is of the format time step, dimensions.
I only got accuracy of 10.91%! So my first question is whether I am feeding in the right parameters.
Thanks
ASC
With model.metrics_names you can get the labels of your scores variable.
In your case it will be ['loss', 'mean_absolute_error'].
So what you are printing is not the accuracy, but the mae, multiplied by 100.
I tried using accuracy instead of mae. However I got accuracy as 0%. Just wondering as this was about predicting numerical values, should I really use accuracy? Here is my latest code.
from pandas import read_csv
import matplotlib.pyplot as plt
import numpy
from keras.datasets import imdb
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Flatten
from keras.layers import Dropout
from keras.layers.convolutional import Conv1D
from keras.layers.convolutional import MaxPooling1D
from keras.layers.embeddings import Embedding
from keras.preprocessing import sequence
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
def create_dataset(dataset, look_back=1):
dataX, dataY = [], []
for i in range(len(dataset)-look_back):
a = dataset[i:(i+look_back), 0]
dataX.append(a)
dataY.append(dataset[i + look_back, 0])
return numpy.array(dataX), numpy.array(dataY)
# fix random seed for reproducibility
seed = 7
numpy.random.seed(seed)
dataframe = read_csv('D:/MIS793/Dataset/Academic Dataset External 2/Python scripts/totalsale _byweek.csv', usecols=[1], engine='python')
plt.plot(dataframe)
plt.show()
dataset = dataframe.values
dataset = dataset.astype('float32')
# normalize the dataset
scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset)
train_size = int(len(dataset) * 0.67)
test_size = len(dataset) - train_size
train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]
# reshape into X=t and Y=t+1
look_back = 1
trainX, trainY = create_dataset(train, look_back)
testX, testY = create_dataset(test, look_back)
trainX = trainX.reshape(trainX.shape[0], trainX.shape[1],1).astype('float32')
testX = testX.reshape(testX.shape[0], testX.shape[1],1).astype('float32')
model = Sequential()
model.add(Conv1D(filters=20, kernel_size=1, padding='same', strides=1, activation='relu',input_shape=(1,1)))
model.add(MaxPooling1D(pool_size=1))
model.add(Conv1D(filters=10, kernel_size=1, padding='same', strides=1, activation='relu'))
model.add(MaxPooling1D(pool_size=1))
model.add(Flatten())
model.add(Dense(4, activation='relu'))
model.add(Dense(1, activation='linear'))
model.compile(loss='mse', optimizer='adam', metrics=['accuracy'])
print(model.summary())
model.fit(trainX, trainY, validation_data=(testX, testY), epochs=10, batch_size=100)
scores = model.evaluate(testX, testY, verbose=0)
print("Accuracy: %.2f%%" % (scores[1]*100))
OR should I go with MAE?
If I go with MAE, my scores will look like below:
[0.12740663779013364, 0.31208728355111426]
First one is loss and second one is MAE. Isn't that a better metrics in this case?
The final line will be like this:
print("MAE: %.2f%%" % (scores[1]))
Thanks
Anindya

Resources