Pyspark dataframe join elements as variables - string

I am facing an issue while I am trying to pass the join elements as variables in pyspark dataframe join function. I am getting primary key fields from a file while I am trying pass it as variable in a join statement, it throws an error as "cannot resolve the column name" since it is passed as a string. Please assist me on this.
for i in range(len(pr_list)):
if i != len(pr_list)-1:
pr_str += " (df_a." + pr_list[i] + " == df_b." +pr_list[i] +") & "
else:
pr_str += "(df_a." + pr_list[i] + " == df_b." +pr_list[i] +")"
print (pr_str)
df1_with_db2 = df_a.join(df_b, pr_str ,'inner').select('df_a.*')

The reason for showing this error is because in the join condition you are passing the join condition as string and in the join condition it accepts either a single column name or list of column names or condition with expressions, you just want to minor change in the code
df1_with_db2 = df_a.alias("df_a").join(df_b, eval(pr_str) ,'inner').select('df_a.*')

By looking at your error it looks your pr_list can have columns which are neither present on any of 2 df or you didn't alias you dataframes befor joining like
df1_with_db2 = df_a.alias("df_a").join(df_b.alias("df_b"), pr_str ,'inner').select('df_a.*')
Below is my way to do this problem:-
In your code, I found both dataframe have the same name of columns and that are in list pr_list
So you can just pass this list as join condition like below (by default join is inner):
df1_with_db2 = df_a.join(
df_b,
pr_list
)
you will get common column only one time so no need to write select function
Here is a example:-
df1 = sqlContext.createDataFrame([
[1,2],
[3,4],
[9,8]
], ['a', 'b'])
df2 = sqlContext.createDataFrame([
[1,2],
[3,4],
[18,19]
], ['a', 'b'])
jlist = ['a','b']
df1.join(df2, jlist).show()
+---+---+
| a| b|
+---+---+
| 1| 2|
| 3| 4|
+---+---+

Related

Update a column in PySpark while doing multiple inner joins?

I have a SQL query which I am trying to convert into PySpark. In SQL query, we are joining three tables and updating a column where there's a match. The SQL query looks like this:
UPDATE [DEPARTMENT_DATA]
INNER JOIN ([COLLEGE_DATA]
INNER JOIN [STUDENT_TABLE]
ON COLLEGE_DATA.UNIQUEID = STUDENT_TABLE.PROFESSIONALID)
ON DEPARTMENT_DATA.PUBLICID = COLLEGE_DATA.COLLEGEID
SET STUDENT_TABLE.PRIVACY = "PRIVATE"
The logic I have tried:
df_STUDENT_TABLE = (
df_STUDENT_TABLE.alias('a')
.join(
df_COLLEGE_DATA('b'),
on=F.col('a.PROFESSIONALID') == F.col('b.UNIQUEID'),
how='left',
)
.join(
df_DEPARTMENT_DATA.alias('c'),
on=F.col('b.COLLEGEID') == F.col('c.PUBLICID'),
how='left',
)
.select(
*[F.col(f'a.{c}') for c in df_STUDENT_TABLE.columns],
F.when(
F.col('b.UNIQUEID').isNotNull() & F.col('c.PUBLICID').isNotNull()
F.lit('PRIVATE')
).alias('PRIVACY')
)
)
This code is adding a new column "PRIVACY", but giving null values after running.
I have taken some sample data and when I apply the join using conditions, the following is the result I get (requirement is that the following record's privacy needs to be set to PRIVATE)
%sql
select student.*,college.*,department.* from department INNER JOIN college INNER JOIN student
ON college.unique_id = student.professional_id and department.public_id = college.college_id
When I used your code (same logic), I got the same output i.e., an additional column being added to the dataframe with required values and the actual privacy column has nulls.
from pyspark.sql.functions import col,when,lit
df_s = df_s.alias('a').join(df_c.alias('b'), col('a.professional_id') == col('b.unique_id'),'left').join(df_d.alias('c'), col('b.college_id') == col('c.public_id'),'left').select(*[col(f'a.{c}') for c in df_s.columns],when(col('b.unique_id').isNotNull() & col('c.public_id').isNotNull(), 'PRIVATE').otherwise(col('a.privacy')).alias('req_value'))
df_s.show()
Since, from the above, req_value is the column with required values and these values need to be reflected in privacy, you can use the following code directly.
final = df_s.withColumn('privacy',col('req_value')).select([column for column in df_s.columns if column!='req_value'])
final.show()
UPDATE:
You can also use the following code where I have updated the column using withColumn instead of select.
df_s = df_s.alias('a').join(df_c.alias('b'), col('a.professional_id') == col('b.unique_id'),'left').join(df_d.alias('c'), col('b.college_id') == col('c.public_id'),'left').withColumn('privacy',when(col('b.unique_id').isNotNull() & col('c.public_id').isNotNull(), 'PRIVATE').otherwise(col('privacy'))).select(*df_s.columns)
#or you can use this as well, without using alias.
#df_s = df_s.join(df_c, df_s['professional_id'] == df_c['unique_id'],'left').join(df_d, df_c['college_id'] == df_d['public_id'],'left').withColumn('privacy',when(df_c['unique_id'].isNotNull() & df_d['public_id'].isNotNull(), 'PRIVATE').otherwise(df_s['privacy'])).select(*df_s.columns)
df_s.show()
After the joins, you can use nvl2. It can check if the join with the last dataframe (df_dept) was successful, if yes, then you can return "PRIVATE", otherwise the value from df_stud.PRIVACY.
Inputs:
from pyspark.sql import functions as F
df_stud = spark.createDataFrame([(1, 'x'), (2, 'STAY')], ['PROFESSIONALID', 'PRIVACY'])
df_college = spark.createDataFrame([(1, 1)], ['COLLEGEID', 'UNIQUEID'])
df_dept = spark.createDataFrame([(1,)], ['PUBLICID'])
df_stud.show()
# +--------------+-------+
# |PROFESSIONALID|PRIVACY|
# +--------------+-------+
# | 1| x|
# | 2| STAY|
# +--------------+-------+
Script:
df = (df_stud.alias('s')
.join(df_college.alias('c'), F.col('s.PROFESSIONALID') == F.col('c.UNIQUEID'), 'left')
.join(df_dept.alias('d'), F.col('c.COLLEGEID') == F.col('d.PUBLICID'), 'left')
.select(
*[f's.`{c}`' for c in df_stud.columns if c != 'PRIVACY'],
F.expr("nvl2(d.PUBLICID, 'PRIVATE', s.PRIVACY) PRIVACY")
)
)
df.show()
# +--------------+-------+
# |PROFESSIONALID|PRIVACY|
# +--------------+-------+
# | 1|PRIVATE|
# | 2| STAY|
# +--------------+-------+

Trouble spliting a column into more columns on Pyspark

I'm having trouble spliting a dataframe's column into more columns in PySpark:
I have a list of lists and I want to transform it into a dataframe, each value in one column.
What I have tried:
I created a dataframe from this list:
[['COL-4560', 'COL-9655', 'NWG-0610', 'D81-3754'],
['DLL-7760', 'NAT-9885', 'PED-0550', 'MAR-0004', 'LLL-5554']]
Using this code:
from pyspark.sql import Row
R = Row('col1', 'col2')
# use enumerate to add the ID column
df_from_list = spark.createDataFrame([R(i, x) for i, x in enumerate(recs_list)])
The result I got is:
+----+--------------------+
|col1| col2|
+----+--------------------+
| 0|[COL-4560, COL-96...|
| 1|[DLL-7760, NAT-98...|
+----+--------------------+
I want to separate the values by comma into columns, so I tried:
from pyspark.sql import functions as F
df2 = df_from_list.select('col1', F.split('col2', ', ').alias('col2'))
# If you don't know the number of columns:
df_sizes = df2.select(F.size('col2').alias('col2'))
df_max = df_sizes.agg(F.max('col2'))
nb_columns = df_max.collect()[0][0]
df_result = df2.select('col1', *[df2['col2'][i] for i in range(nb_columns)])
df_result.show()
But I get an error on this line df2 = df_from_list.select('col1', F.split('col2', ', ').alias('col2')):
AnalysisException: cannot resolve 'split(`col2`, ', ', -1)' due to data type mismatch: argument 1 requires string type, however, '`col2`' is of array<string> type.;;
My ideal final output would be like this:
+----------+----------+----------+----------+----------+
| SKU | REC_01 | REC_02 | REC_03 | REC_04 |
+----------+----------+----------+----------+----------+
| COL-4560 | COL-9655 | NWG-0610 | D81-3754 | null |
| DLL-7760 | NAT-9885 | PED-0550 | MAR-0004 | LLL-5554 |
+---------------------+----------+----------+----------+
Some rows may have four values, but some my have more or less, I don't know the exact number of columns the final dataframe will have.
Does anyone have any idea of what is happening? Thank you very much in advance.
Dataframe df_from_list col2 column is already array type, so no need to split (as split works with stringtype here we have arraytype).
Here are the steps that will work for you.
recs_list=[['COL-4560', 'COL-9655', 'NWG-0610', 'D81-3754'],
['DLL-7760', 'NAT-9885', 'PED-0550', 'MAR-0004', 'LLL-5554']]
from pyspark.sql import Row
R = Row('col1', 'col2')
# use enumerate to add the ID column
df_from_list = spark.createDataFrame([R(i, x) for i, x in enumerate(recs_list)])
from pyspark.sql import functions as F
df2 = df_from_list
# If you don't know the number of columns:
df_sizes = df2.select(F.size('col2').alias('col2'))
df_max = df_sizes.agg(F.max('col2'))
nb_columns = df_max.collect()[0][0]
cols=['SKU','REC_01','REC_02','REC_03','REC_04']
df_result = df2.select(*[df2['col2'][i] for i in range(nb_columns)]).toDF(*cols)
df_result.show()
#+--------+--------+--------+--------+--------+
#| SKU| REC_01| REC_02| REC_03| REC_04|
#+--------+--------+--------+--------+--------+
#|COL-4560|COL-9655|NWG-0610|D81-3754| null|
#|DLL-7760|NAT-9885|PED-0550|MAR-0004|LLL-5554|
#+--------+--------+--------+--------+--------+

How to filter based on the value(tuples) in a pair RDD in terms of key

The sample RDD looks like:
(key1,(111,222,1)
(key1,(113,224,1)
(key1,(114,225,0)
(key1,(115,226,0)
(key1,(113,226,0)
(key1,(116,227,1)
(key1,(117,228,1)
(key2,(118,229,1)
I am currently doing a spark project. I want to filter the first and last elements where the third position in tuple values are '1' and '0' based on keys.
Is it possible to do it with reduceByKey? But after my research, I did not find a good logic to reach what I want. I want my result in the order which is the same as the output shown below.
Expected output:
(key1,(111,222,1)
(key1,(114,225,0)
(key1,(113,226,0)
(key1,(116,227,1)
(key2,(118,229,1)
Much appreciated.
If I understand correctly, you want the first "1", the first "0", the last "1" and the last "0" for each key, and maintain the order. If I were you, I would use the SparkSQL API to do that.
First, let's build your RDD (By the way, providing sample data is very nice, giving enough code so that we can reproduce what you did is ever better):
val seq = Seq(("key1",(111,222,1)),
("key1",(113,224,1)),
("key1",(114,225,0)),
("key1",(115,226,0)),
("key1",(113,226,0)),
("key1",(116,227,1)),
("key1",(117,228,1)),
("key2",(118,229,1)))
val rdd = sc.parallelize(seq)
// then I switch to dataframes, and add an id to be able to go back to
// the previous order
val df = rdd.toDF("key", "value").withColumn("id", monotonicallyIncreasingId)
df.show()
+----+-----------+------------+
| key| value| id|
+----+-----------+------------+
|key1|[111,222,1]| 8589934592|
|key1|[113,224,1]| 25769803776|
|key1|[114,225,0]| 42949672960|
|key1|[115,226,0]| 60129542144|
|key1|[113,226,0]| 77309411328|
|key1|[116,227,1]| 94489280512|
|key1|[117,228,1]|111669149696|
|key2|[118,229,1]|128849018880|
+----+-----------+------------+
Now, we can group by "key" and "value._3", keep the min(id) and its max and explode back the data. With a window however, we can do it in a simpler way. Let's define the following window:
val win = Window.partitionBy("key", "value._3").orderBy("id")
// now we compute the previous and next element of each id using resp. lag and lead
val big_df = df
.withColumn("lag", lag('id, 1) over win)
.withColumn("lead", lead('id, 1) over win)
big_df.show
+----+-----------+------------+-----------+------------+
| key| value| id| lag| lead|
+----+-----------+------------+-----------+------------+
|key1|[111,222,1]| 8589934592| null| 25769803776|
|key1|[113,224,1]| 25769803776| 8589934592| 94489280512|
|key1|[116,227,1]| 94489280512|25769803776|111669149696|
|key1|[117,228,1]|111669149696|94489280512| null|
|key1|[114,225,0]| 42949672960| null| 60129542144|
|key1|[115,226,0]| 60129542144|42949672960| 77309411328|
|key1|[113,226,0]| 77309411328|60129542144| null|
|key2|[118,229,1]|128849018880| null| null|
+----+-----------+------------+-----------+------------+
Now we see that the rows you are after are the ones with either a lag equal to null (first element) or a lead equal to null (last element). Therefore, let's filter, sort back to the previous order using the id and select the columns you need:
val result = big_df
.where(('lag isNull) || ('lead isNull))
.orderBy('id)
.select("key", "value")
result.show
+----+-----------+
| key| value|
+----+-----------+
|key1|[111,222,1]|
|key1|[114,225,0]|
|key1|[113,226,0]|
|key1|[117,228,1]|
|key2|[118,229,1]|
+----+-----------+
Finally, if you really need a RDD, you can convert the dataframe with:
result.rdd.map(row => row.getAs[String](0) -> row.getAs[(Int, Int, Int)](1))

Pyspark DataFrame: find difference between two DataFrames (values and column names)

I am having total 100+ columns in dataframe.
I am trying to compare two data frame and find unmatched record with column name.
I got a output bellow code but When I run the code for 100+ columns job got aborted.
I am doing this for SCD Type 2 delta process error finding.
from pyspark.sql.types import *
from pyspark.sql.functions import *
d2 = sc.parallelize([("A1", 500,1005) ,("A2", 700,10007)])
dataFrame1 = sqlContext.createDataFrame(d2, ["ID", "VALUE1", "VALUE2"])
d2 = sc.parallelize([("A1", 600,1005),("A2", 700,10007)])
dataFrame2 = sqlContext.createDataFrame(d2, ["ID", "VALUE1", "VALUE2"])
key_id_col_name="ID"
key_id_value="A1"
dataFrame1.select("ID","VALUE1").subtract(dataFrame2.select("ID",col("VALUE1").alias("value"))).show()
def unequalColumnValuesTwoDF(dataFrame1,dataFrame2,key_id_col_name,key_id_value):
chk_fst=True
dataFrame1 = dataFrame1.where(dataFrame1[key_id_col_name] == key_id_value)
dataFrame2 = dataFrame2.where(dataFrame2[key_id_col_name] == key_id_value)
col_names = list(set(dataFrame1.columns).intersection(dataFrame2.columns))
col_names.remove(key_id_col_name)
for col_name in col_names:
if chk_fst == True:
df_tmp = dataFrame1.select(col(key_id_col_name).alias("KEY_ID"),col(col_name).alias("VALUE")).subtract(dataFrame2.select(col(key_id_col_name).alias("KEY_ID"),col(col_name).alias("VALUE"))).withColumn("COL_NAME",lit(col_name))
chk_fst = False
else:
df_tmp = df_tmp.unionAll(dataFrame1.select(col(key_id_col_name).alias("KEY_ID"),col(col_name).alias("VALUE")).subtract(dataFrame2.select(col(key_id_col_name).alias("KEY_ID"),col(col_name).alias("VALUE"))).withColumn("COL_NAME",lit(col_name)))
return df_tmp
res_df = unequalColumnValuesTwoDF(dataFrame1,dataFrame2,key_id_col_name,key_id_value)
res_df.show()
>>> dataFrame1.show()
+---+------+------+
| ID|VALUE1|VALUE2|
+---+------+------+
| A1| 500| 1005|
| A2| 700| 10007|
+---+------+------+
>>> dataFrame2.show()
+---+------+------+
| ID|VALUE1|VALUE2|
+---+------+------+
| A1| 600| 1005|
| A2| 700| 10007|
+---+------+------+
>>> res_df.show()
+------+-----+--------+
|KEY_ID|VALUE|COL_NAME|
+------+-----+--------+
| A1| 500| VALUE1|
+------+-----+--------+
Please suggest any other way.
Here is another approach:
Join the two DataFrames using the ID column.
Then for each row, create a new column which contains the columns for which there is a difference.
Create this new column as a key-value pair map using pyspark.sql.functions.create_map().1
The key for the map will be the column name.
Using pyspark.sql.functions.when(), set the value to the corresponding value in in dataFrame1 (as it seems like that is what you want from your example) if there is a difference between the two DataFrames. Otherwise, we set the value to None.
Use pyspark.sql.functions.explode() on the map column, and filter out any rows where the difference is not null using pyspark.sql.functions.isnull().
Select the columns you want and rename using alias().
Example:
import pyspark.sql.functions as f
columns = [c for c in dataFrame1.columns if c != 'ID']
dataFrame1.alias('r').join(dataFrame2.alias('l'), on='ID')\
.withColumn(
'diffs',
f.create_map(
*reduce(
list.__add__,
[
[
f.lit(c),
f.when(
f.col('r.'+c) != f.col('l.'+c),
f.col('r.'+c)
).otherwise(None)
]
for c in columns
]
)
)
)\
.select([f.col('ID'), f.explode('diffs')])\
.where(~f.isnull(f.col('value')))\
.select(
f.col('ID').alias('KEY_ID'),
f.col('value').alias('VALUE'),
f.col('key').alias('COL_NAME')
)\
.show(truncate=False)
#+------+-----+--------+
#|KEY_ID|VALUE|COL_NAME|
#+------+-----+--------+
#|A1 |500 |VALUE1 |
#+------+-----+--------+
Notes
1 The syntax *reduce(list.__add__, [[f.lit(c), ...] for c in columns]) as the argument to create_map() is some python-fu that helps create the map dynamically.
create_map() expects an even number of arguments- it assumes that the first argument in every pair is the key and the second is the value. In order to put the arguments in that order, the list comprehension yields a list for each iteration. We reduce this list of lists into a flat list using list.__add__.
Finally the * operator is used to unpack the list.
Here is the intermediate output, which may make the logic clearer:
dataFrame1.alias('r').join(dataFrame2.alias('l'), on='ID')\
.withColumn(
'diffs',
f.create_map(
*reduce(
list.__add__,
[
[
f.lit(c),
f.when(
f.col('r.'+c) != f.col('l.'+c),
f.col('r.'+c)
).otherwise(None)
]
for c in columns
]
)
)
)\
.select('ID', 'diffs').show(truncate=False)
#+---+-----------------------------------+
#|ID |diffs |
#+---+-----------------------------------+
#|A2 |Map(VALUE1 -> null, VALUE2 -> null)|
#|A1 |Map(VALUE1 -> 500, VALUE2 -> null) |
#+---+-----------------------------------+

Find all nulls with SQL query over pyspark dataframe

I have a dataframe of StructField with a mixed schema (DoubleType, StringType, LongType, etc.).
I want to 'iterate' over all columns to return summary statistics. For instance:
set_min = df.select([
fn.min(self.df[c]).alias(c) for c in self.df.columns
]).collect()
Is what I'm using to find the minimum value in each column. That works fine. But when I try something designed similar to find Nulls:
set_null = df.filter(
(lambda x: self.df[x]).isNull().count()
).collect()
I get the TypeError: condition should be string or Column which makes sense, I'm passing a function.
or with list comprehension:
set_null = self.df[c].alias(c).isNull() for c in self.df.columns
Then I try pass it a SQL query as a string:
set_null = df.filter('SELECT fields FROM table WHERE column = NUL').collect()
I get:
ParseException: "\nmismatched input 'FROM' expecting <EOF>(line 1, pos 14)\n\n== SQL ==\nSELECT fields FROM table WHERE column = NULL\n--------------^^^\n"
How can i pass my function as a 'string or column' so I can use filter or where alternatively, why wont the pure SQL statement work?
There are things wrong in several parts of your attempts:
You are missing square brackets in your list comprehension example
You missed an L in NUL
Your pure SQL doesn't work, because filter/where expects a where clause, not a full SQL statement; they are just aliases and I prefer to use where so it is clearer you just need to give such a clause
In the end you don't need to use where, like karlson also shows. But subtracting from the total count means you have to evaluate the dataframe twice (which can be alleviated by caching, but still not ideal). There is a more direct way:
>>> df.select([fn.sum(fn.isnull(c).cast('int')).alias(c) for c in df.columns]).show()
+---+---+
| A| B|
+---+---+
| 2| 3|
+---+---+
This works because casting a boolean value to integer give 1 for True and 0 for False. If you prefer SQL, the equivalent is:
df.select([fn.expr('SUM(CAST(({c} IS NULL) AS INT)) AS {c}'.format(c=c)) for c in df.columns]).show()
or nicer, without a cast:
df.select([fn.expr('SUM(IF({c} IS NULL, 1, 0)) AS {c}'.format(c=c)) for c in df.columns]).show()
If you want a count of NULL values per column you could count the non-null values and subtract from the total.
For example:
from pyspark.sql import SparkSession
from pyspark.sql import functions as fn
spark = SparkSession.builder.master("local").getOrCreate()
df = spark.createDataFrame(
data=[
(1, None),
(1, 1),
(None, None),
(1, 1),
(None, 1),
(1, None),
],
schema=("A", "B")
)
total = df.count()
missing_counts = df.select(
*[(total - fn.count(col)).alias("missing(%s)" % col) for col in df.columns]
)
missing_counts.show()
>>> +----------+----------+
... |missing(A)|missing(B)|
... +----------+----------+
... | 2| 3|
... +----------+----------+

Resources