I am trying to test my KNN classifier against some data that I sourced from UCI's Machine Learning Repository. When running the classifier I keep getting the same KeyError
train_set[i[-1]].append(i[:-1])
KeyError: NaN
I am not sure why this keeps happening because if I comment out the classifier and just print the first 10 lines or so, the data shows up fine with no corruption or duplication of any kind.
Here is a link to the data that I am using, I just simply downloaded it and added the column ID's (note: in this link the column ID's have not been added)
Here is what some of the code looks like:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import style
import warnings
from math import sqrt
from collections import Counter
import pandas as pd
import random
style.use('fivethirtyeight')
def k_nearest_neighbors(data, predict, k=3):
if len(data) >= k:
warnings.warn('K is set to a value less than total voting groups!')
distances = []
for group in data:
for features in data[group]:
euclidean_distance = np.linalg.norm(np.array(features)-np.array(predict))
distances.append([euclidean_distance,group])
votes = [i[1] for i in sorted(distances)[:k]]
vote_result = Counter(votes).most_common(1)[0][0]
return vote_result
df = pd.read_csv('breast-cancer-wisconsin.data.txt')
df.replace('?',-99999, inplace=True)
df.drop(['id'], 1, inplace=True)
full_data = df.astype(float).values.tolist()
random.shuffle(full_data)
test_size = 0.2
train_set = {2:[], 4:[]}
test_set = {2:[], 4:[]}
train_data = full_data[:-int(test_size*len(full_data))]
test_data = full_data[-int(test_size*len(full_data)):]
for i in train_data:
train_set[i[-1]].append(i[:-1])
for i in test_data:
test_set[i[-1]].append(i[:-1])
correct = 0
total = 0
for group in test_set:
for data in test_set[group]:
vote = k_nearest_neighbors(train_set, data, k=5)
if group == vote:
correct += 1
total += 1
print('Accuracy:', correct/total)
I am completely stumped as to why this KeyError keeps showing up, (it also happens on the
test_set[i[-1]].append(i[:-1]) line as well.
I tried looking for people who experienced similar issues but have since found nobody with the same issue as me. As always any assistance is greatly appreciated, thank you.
I figured out that the error was caused by a spacing issue. When typing in the classes for the data after I downloaded it, I forgot to input the classes on their own line. I instead typed my classes right in front of the first data point causing the error to occur.
Related
data set imagePlease use python language. I'm a beginner in frequent data mining systems. I'm trying to understand. Be simple and detailed as much as possible please
I tried using the for loop to collect data from a range but I'm still learning so I don't know how to implement it (keeps giving me the error "index 1 is out of bounds for axis 1 with size 1"). Please guide me.
NB: I was trying to construct a data frame but I don't know how to. Help me with that too
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import csv
# Calling DataFrame constructor
Data = pd.read_csv('retail.txt', header = None)
# Intializing the list
transacts = []
# populating a list of transactions
for i in range(1, 9):
transacts.append([str(Data.values[i,j]) for j in range(1, 2000)])
df = pd.DataFrame()
I create a program that predict digits from in a dataset. I want when it predict data their should be two cases if it predict right then data should added automatically in dataset otherwise it takes right answer throw user and insert to dataset.
code
import numpy as np
import pandas as pd
import matplotlib.pyplot as pt
from sklearn.tree import DecisionTreeClassifier
data = pd.read_csv("train.csv").values
clf = DecisionTreeClassifier()
xtrain = data[0:21000,1:]
train_label=data[0:21000,0]
clf.fit(xtrain,train_label)
xtest = data[21000: ,1:]
actual_label=data[21000:,0]
d = xtest[9]
d.shape = (28,28)
pt.imshow(d,cmap='gray')
print(clf.predict([xtest[9]]))
pt.show()
I'm not sure I'm following your question, but if you want to distinguish between good and wrong predictions and take different ways, you should specific do that.
predictions = clf.predict(xtest)
good_predictions = xtest[pd.Series(predictions == actual_label)]
bad_predictions = xtest[pd.Series(predictions != actual_label)]
So, in good_predictions will be all the rows in xtest that where predicted right.
I have two different data sets. One for training my classifier and the other one is for testing. Both the datasets are text files with two columns separated by a ",". FIrst column (numbers) is for the independent variable (group) and the second column is for the dependent variable.
Training data set
(just few lines for example. there are no empty lines between each row):
EMI3776438,1
EMI3776438,1
EMI3669492,1
EMI3752004,1
Testing data setup
(as you can see, i have picked data from the training data to be sure that the score surely can't be zero)
EMI3776438,1
Code in Python 3.6:
# #all the import statements have been ignored to keep the code short
# #loading the training data set
training_file_path=r'C:\Users\yyy\Desktop\my files\python\Machine learning\Carepack\modified_columns.txt'
from sklearn import preprocessing
le = preprocessing.LabelEncoder()
training_file_data = pandas.read_table(training_file_path,
header=None,
names=['numbers','group'],
sep=',')
training_file_data = training_file_data.apply(le.fit_transform)
features = ['numbers']
x = training_file_data[features]
y = training_file_data["group"]
from sklearn.model_selection import train_test_split
training_x,testing_x, training_y, testing_y = train_test_split(x, y,
random_state=0,
test_size=0.1)
from sklearn.naive_bayes import GaussianNB
gnb= GaussianNB()
gnb.fit(training_x, training_y)
# #loading the testing data
testing_final_path=r"C:\Users\yyy\Desktop\my files\python\Machine learning\Carepack\testing_final.txt"
testing_sample_data=pandas.read_table(testing_final_path,
sep=',',
header=None,
names=['numbers','group'])
testing_sample_data = testing_sample_data.apply(le.fit_transform)
category = ["numbers"]
testing_sample_data_x = testing_sample_data[category]
# #finding the score of the test data
print(gnb.score(testing_sample_data_x, testing_sample_data["group"]))
First, the above data samples dont show how many classes are there in it. You need to describe more about it.
Secondly, you are calling le.fit_transform again on test data which will forget all the training samples mappings from strings to numbers. The LabelEncoder le will start encoding the test data again from scratch, which will not be equal to how it mapped training data. So the input to GaussianNB is now incorrect and hence incorrect results.
Change that to:
testing_sample_data = testing_sample_data.apply(le.transform)
UPDATE:
I'm sorry I overlooked the fact that you had two columns in your data. LabelEncoder only works on a single column of data. For making it work on multiple pandas columns at once, look at the answers of following question:
Label encoding across multiple columns in scikit-learn
If you are using the latest version of scikit (0.20) or can update to it, then you would not need any such hacks and directly use the OrdinalEncoder:
from sklearn.preprocessing import OrdinalEncoder
enc = OrdinalEncoder()
training_file_data = enc.fit_transform(training_file_data)
And during testing:
training_file_data = enc.transform(training_file_data)
I have a daily time series data for almost 2 years for cluster available space (in GB). I am trying to to use facebook's prophet to do future forecasts. Some forecasts have negative values. Since negative values does not make sense I saw that using carrying capacity for logistic growth model helps in eliminating negative forecasts with cap values. I am not sure if this is applicable for this case and how to get the cap value for my time series. Please help as I am new to this and confused. I am using Python 3.6
import numpy as np
import pandas as pd
import xlrd
import openpyxl
from pandas import datetime
import csv
import matplotlib.pyplot as plt
plt.style.use('fivethirtyeight')
from fbprophet import Prophet
import os
import sys
import signal
df = pd.read_excel("Data_Per_day.xlsx")
df1=df.filter(['cluster_guid','date','avail_capacity'],axis=1)
uniquevalues = np.unique(df1[['cluster_guid']].values)
for id in uniquevalues:
newdf = df1[df1['cluster_guid'] == id]
newdf1=newdf.groupby(['cluster_guid','date'],as_index=False['avail_capacity'].sum()
#newdf11=newdf.groupby(['cluster_guid','date'],as_index=False)['total_capacity'].sum()
#cap[id]=newdf11['total_capacity'].max()
#print(cap[id])
newdf1.set_index('cluster_guid', inplace=True)
newdf1.to_csv('my_csv.csv', mode='a',header=None)
with open('my_csv.csv',newline='') as f:
r = csv.reader(f)
data = [line for line in r]
with open('my_csv.csv','w',newline='') as f:
w = csv.writer(f)
w.writerow(['cluster_guid','DATE_TAKEN','avail_capacity'])
w.writerows(data)
in_df = pd.read_csv('my_csv.csv', parse_dates=True, index_col='DATE_TAKEN' )
in_df.to_csv('my_csv.csv')
dfs= pd.read_csv('my_csv.csv')
uni=dfs.cluster_guid.unique()
while True:
try:
print(" Press Ctrl +C to exit or enter the cluster guid to be forcasted")
i=input('Please enter the cluster guid')
if i not in uni:
print( 'Please enter a valid cluster guid')
continue
else:
dfs1=dfs.loc[df['cluster_guid'] == i]
dfs1.drop('cluster_guid', axis=1, inplace=True)
dfs1.to_csv('dataframe'+i+'.csv', index=False)
dfs2=pd.read_csv('dataframe'+i+'.csv')
dfs2['DATE_TAKEN'] = pd.DatetimeIndex(dfs2['DATE_TAKEN'])
dfs2 = dfs2.rename(columns={'DATE_TAKEN': 'ds','avail_capacity': 'y'})
my_model = Prophet(interval_width=0.99)
my_model.fit(dfs2)
future_dates = my_model.make_future_dataframe(periods=30, freq='D')
forecast = my_model.predict(future_dates)
print(forecast[['ds', 'yhat', 'yhat_lower', 'yhat_upper']])
my_model.plot(forecast,uncertainty=True)
my_model.plot_components(forecast)
plt.show()
os.remove('dataframe'+i+'.csv')
os.remove('my_csv.csv')
except KeyboardInterrupt:
try:
os.remove('my_csv.csv')
except OSError:
pass
sys.exit(0)
Box-Cox transform of order 0 get the trick done. Here are the steps:
1. Add 1 to each values (so as to avoid log(0))
2. Take natural log of each value
3. Make forecasts
4. Take exponent and subtract 1
This way you will not get negative forecasts. Also log have a nice property of converting multiplicative seasonality to additive form.
I have a jester data, the data has 100 movies and it's raiting which is given by 24983 user and the data has lots of missing datas. My job is predict its.
I want to start with Decision Tree,
I'm thinking that, First I will select first column of data(it has first movies raitings) and then I will delete first column from data. Then I will fit them, and finally I will found prediction probablity of first column(which is deleted from data)
I'm working on Python
import numpy as np
import pandas as pd
from sklearn.preprocessing import Imputer
from sklearn.preprocessing import PolynomialFeatures
from sklearn.ensemble import RandomForestClassifier
df = pd.read_excel(input_file, header=None)
matrix = df.as_matrix()
imp = Imputer(missing_values=99, strategy='mean', axis=0)
imp.fit(matrix)
matrix= imp.transform(matrix)
train_data = matrix[:,:90] #train data (train data has 90 column)
test_data = matrix[:,90:] #%10 test data (test data has 10 column)
array2 = train_data.copy()
column = array2[:,0] # 0. column should be delete
array2 = np.delete(array2,0,axis=1) # 0. column should be select
clf = RandomForestClassifier(n_estimators=25)
clf.fit(array2.astype(int), column.astype(int))
clf_probs = clf.predict_proba(column)
my last giving error -> ValueError: Number of features of the model must match the input. Model n_features is 89 and input n_features is 24983
I have to predict the column like what I tell you (above the code)
What should I do? I really need help.