is there a scenario where we can use the Google Resonance Audio SDK not with headphones, but with real speakers (e.g. mounted in a 360° cyrcle setting)?
Or are all algorithms not working for real speaker outputs?
Thank you!
Currently, Resonance Audio is optimized for headphone playback. For example, HRTF processing is done in the Ambisonics domain, without generating (virtual) speaker signals - this is because it is a much more efficient way of generating binaural output.
However, in the Resonance Audio open source release, the Ambisonic Codec class can readily be used to decode Ambisonics to any arbitrary loudspeaker array. To use that with the rest of the Resonance Audio system, however, it would be necessary to modify/extend the audio processing graph by adding a new decoder node.
Please, feel free to add a feature request and, depending on popularity, we might consider adding that in the future!
Related
I am starting a project to test the audio performance on linux.
What I need to do is to play the audio on our websystem and check the audio quality (or just check it has audio output) on linux.
I am going to record the audio on linux with ffmpeg. Is there any other better choice?
I don't know how to (automation) check I recorded is what I played, as well as the quality of recorded audio.
I think what you need is PESQ (Perceptual Evaluation of Sound Quality). However I have not found anything which is open source/free and out of the box.
You can download the recommendation from here:
http://www.itu.int/rec/T-REC-P.862-200511-I!Amd2/en
Basically this is the reference implementation of PESQ.
Sevana has an audio quality analyser which is not an ITU standard, it is AQuA:
http://www.sevana.fi/aqua_wiki.php
It is available for linux but I think you have to pay for it.
You can also check the similarities for two audio files with cross-correlation, please refer to here:
https://dsp.stackexchange.com/questions/736/how-do-i-implement-cross-correlation-to-prove-two-audio-files-are-similar
I just learned that lot of people are using Matlab or Octave to generate the necessary data, for example:
http://bagustris.blogspot.ie/2011/11/calculate-time-lag-from-cross.html
I have built a source client using Portaudio and LAME which streams the microphone input to an Icecast server to be listened to online via the HTML5 tag. I have managed to (supposedly) get the quality of the stream to MP3 320kbps at 44.1kHz and am looking for a way to confirm this using tests and or benchmarks.
I have an indication that these stats are somewhat correct from looking at stream inspectors in software such as iTunes and VLC, but I am looking to get a more in-depth data set.
What I basically want is to be able to test how much of the original file is being lost over the stream and if or how much the quality changes depending on environmental conditions of the broadcaster or streamer.
Does anyone know of any tools, frameworks to get some hard numbers or representations of this data?
If VLC tells you the stream is 320kbit CBR, then it is.
It sounds like what you're looking for is a comparison of the actual audio content. This is highly subjective. MP3 is built to use features of how our hearing works to save bandwidth. For example, quiet sounds are masked by loud sounds. High frequencies are harder to hear and are simply rolled off.
You can compare the spectral analysis between the original PCM-sampled waveform and the MP3 decoded waveform, but this doesn't tell you how humans interpret that sound. For that, you would have to survey humans.
I'm trying to make a video tutorial, so i decided to record the speeches using a TTS online service.
I use Audacity to capture the sound, and the sound was clear !
After dinning, i wanted to finish the last speeches, but the sound wasn't the same anymore, there is a background noise(parasite) which is disturbing, i removed it with Audacity, but despite this, the voice isn't the same ...
You can see here the difference between the soundtrack of the same speech before and after the occurrence of the problem.
The codec used by the stereo mix peripheral is "IDT High Definition Codec".
Thank you.
Perhaps some cable or plug got loose? Do check for this!
If you are using really cheap gear (built-in soundcard and the likes) it might very well also be a problem of electrical interference, anything from ...
Switching on some device emitting a electro magnetic field (e.g. another monitor close by)
Repositioning electrical devices on your desk
Changes in CPU load on your computer (yes i'm serious!)
... could very well cause some kinds of noises with low-fi sound hardware.
Generally, if you need help on audio sounding wrong make sure that you provide a way to LISTEN to the files, not just a visual representation.
Also in your posted waveform graphics i can see that the latter signal is more compressed, which may point to some kind of automated levelling going on somewhere in the audio chain.
We have some raw voice audio that we need to distribute over the internet. We need decent quality, but it doesn't need to be of musical quality. Our main concern is usability by the consumer (i.e. what and where they can play it) and size of the download. My experience has shown that mp3s do not produce the best compression numbers for voice audio, but I am at a loss for what the best alternatives are. Ultimately we would like to automate the conversion process to allow the consumer to choose the quality vs. size level that they would like.
You should give Opus a try. Example compression command line:
ffmpeg -i x.wav -b:a 32k x.opus
Start here.
As you rightly point out, voice compression is different from general audio compression. You'll find many codecs dedicated to telephony applications, ranging from PCM and ADPCM through later packet based encodings such as CELP used on GSM cellular networks.
Still, VOIP voice encoding is slightly different from that due to the medium used. you can find a good, free (unencumbered and open source (BSD)) library for speech encoding/decoding in the Speex software library.
Again, which you choose depends on the speech you're encoding and the medium it's being transmitted over. Also note that many libraries have several algorithms they can use depending on the circumstances, and some will even switch on the fly based on conditions of the sound and network.
To get more help, narrow your question down.
-Adam
The most frequently used compression formats used in live voice audio (like VoIP telephony) are μ-Law (mu-Law/u-Law is used in the US) and a-Law (used in Europe, etc.) which, unlike Uncompressed PCM, don't support as wide of a frequency range (a smaller range of possible values ignores sounds outside of the necessary spectrum and requires less space to store).
For usability sake it is easiest to use mpeg compressions (mp2/3/4) for streaming to standard media players as the algorithms are readily available and typically quite fast and almost all media players should support it, but for voice you might try to specify a lower bitrate or do your conversion from a lower quality file in the first place (WAV can be at several sampling rates and voice requires a much lower sampling rate than music or effects, it's basically like frame-per-second on video). Alternatively you can use Real Media, WMA or other proprietary formats, but this would limit usability since the users would require specific third party software for playback, though WMA has an excellent compression ratio as well as compression options specific to voice audio.
Assuming your users will be running Windows, there is a WMA speech compression codec that you can use with the Windows Media Encoder SDK. Failing that, you can use ACM to use something like G723/G728, ADPCM, mu-law or a-law, some of which are installed as standard on Windows XP & above. These can be packaged inside WAV files. You'll need to experiment a little to find the right bitrate/quality (probably don't bother with mu-law or a-law). With voice data you can get away with quite low sample rates - e.g. 16000 or 8000, as there isn't much above 4Khz in the human spoken voice.
I think AMR is one of the best speech codecs. I was using it about a year ago and I remember that quality was very good and size levels were rather small.
One drawback, especially in your case is that, as far as I know, it isn't supported by wide range of media players. QuickTime and RealPlayer are two which I know to play .amr files.
Try speex ... unencumbered by patents, good performance both sizewise and CPU-wise. I've been having good luck using it on iPhone.
Having just witnessed Sound Load technology on the Nintendo DS game Bangai-O Spritis. I was curious as to how this technology works? Does anyone have any links, documentation or sample code on implementing such a feature, that would allow the state of an application to be saved and loaded via audio?
Its the same old thing used in ZX Spectrum era. You load programs/games from tape.Only the sound quality and the filters are probably better.
In my opinion something like Bluetooth or WiFi is better. You can also send files that can be put on some storage and then load them. I find these methods much easier than sound because if there is a lot of noise around you cannot do much.
It is just a conversion of data to audio and then back from audio to data.
Search for Zotyocopy and Copy86M on google - these are the utilities used for saving a game to tape after loading it into memory on zx spectrum.
If you want to pass data as audio through the air there are a few things you need to be aware of though, such as how the speaker and microphone interact for example. It is important that they don't distort or alter the sound too much as what you are sending are in fact the raw bytes.
Some audio software will let you open any file as audio so that you may listen to it. If you record audio as data do not use lossy compression such as mp3 on the audio file!