Dynamically pattern matching nested GADT back out of a wrapper - haskell

I recently asked how to make a homogenous list of GADT instances: Function returning result of any constructor of a GADT
tl;dr
{-#LANGUAGE GADTs, EmptyDataDecls #-}
module Main where
-- Define a contrived GADT
data TFoo
data TBar
data Thing a where
Foo :: Int -> Thing TFoo
Bar :: String -> Thing TBar
data SomeThing = forall a. SomeThing (Thing a)
combine :: [SomeThing]
combine = [Something $ Foo 1, SomeThing $ Bar "abc"]
Now, I'm having some trouble dynamically "unwrapping" them. Let's say we have this (still contrived, but closer to my real use case) code:
{-#LANGUAGE GADTs, EmptyDataDecls #-}
module Main where
-- Define a contrived GADT
data Thing a where
Thing :: TKind a -> Thing a
data TFoo
data TBar
data TKind a where
Foo :: TKind TFoo
Bar :: TKind TBar
data SomeThing = forall a. SomeThing (Thing a)
example :: SomeThing
example = SomeThing $ Thing Foo
extractThingWithTKind :: TKind a -> SomeThing -> Either String (Thing a)
extractThingWithTKind k st = case st of
SomeThing t#(Thing k) -> Right t
_ -> Left "nope"
The above doesn't work because the t in Right t doesn't have the type Thing a. Intrinsically, I understand why this doesn't work. Pattern matching on the k doesn't do what I want (only match if the k is the same as the one passed in). But this is my best stab at approximating what I want. I tried instanceing Eq on TKind a, but because (==) :: a -> a -> Bool, this won't work (the equality depends on potentially disparate types at runtime). I could wrap TKind like I did Thing, but then I'd just be pushing the problem lower.
Removing the dynamism, I tried just pattern matching out a Thing TFoo explicitly:
extractThingWithFoo :: SomeThing -> Either String (Thing TFoo)
extractThingWithFoo st = case st of
SomeThing t#(Thing Foo) -> Right t
_ -> Left "nope"
And that works! But does this mean that I can't do the dynamic matching? It would be a real pain to have to duplicate the above method for each kind TKind (in the non-contrived version, there are many). The only other solution I see is changing SomeThing to be a sum type that has one wrapper for each TKind, but then you're just moving the duplicated code to a different place (and forcing all uses of SomeThing to pattern match each).

In order to implement a function with the signature
extractThingWithTKind :: TKind a -> SomeThing -> Either String (Thing a), we need to be able to decide that what's inside SomeThing is a TKind a or not. GADT constructors are witnesses of such type equalities, but they need to be explicitly pattern-matched on to "unwrap" these assumptions in the function's local scope.
extractThingWithTKind :: TKind a -> SomeThing -> Either String (Thing a)
extractThingWithTKind Foo (SomeThing t#(Thing Foo)) = Right t
extractThingWithTKind Bar (SomeThing t#(Thing Bar)) = Right t
extractThingWithTKind _ _ = Left "nope"
Pattern matching on the first argument gives rise to the assumption that a ~ TFoo (in the first case), and further pattern matching on the second argument proves that the thing inside SomeThing is also a TFoo. Crucially, the individual cases have to be spelled out one by one, as it's the constructors themselves that provide the evidence.

Related

Parameterized Types in Haskell

Why do types in Haskell have to be explicitly parameterized in the type constructor parameter?
For example:
data Maybe a = Nothing | Just a
Here a has to be specified with the type. Why can't it be specified only in the constructor?
data Maybe = Nothing | Just a
Why did they make this choice from a design point of view? Is one better than the other?
I do understand that first is more strongly typed than the second, but there isn't even an option for the second one.
Edit :
Example function
data Maybe = Just a | Nothing
div :: (Int -> Int -> Maybe)
div a b
| b == 0 = Nothing
| otherwise = Just (a / b)
It would probably clear things up to use GADT notation, since the standard notation kind of mangles together the type- and value-level languages.
The standard Maybe type looks thus as a GADT:
{-# LANGUAGE GADTs #-}
data Maybe a where
Nothing :: Maybe a
Just :: a -> Maybe a
The “un-parameterised” version is also possible:
data EMaybe where
ENothing :: EMaybe
EJust :: a -> EMaybe
(as Joseph Sible commented, this is called an existential type). And now you can define
foo :: Maybe Int
foo = Just 37
foo' :: EMaybe
foo' = EJust 37
Great, so why don't we just use EMaybe always?
Well, the problem is when you want to use such a value. With Maybe it's fine, you have full control of the contained type:
bhrar :: Maybe Int -> String
bhrar Nothing = "No number 😞"
bhrar (Just i)
| i<0 = "Negative 😖"
| otherwise = replicate i '😌'
But what can you do with a value of type EMaybe? Not much, it turns out, because EJust contains a value of some unknown type. So whatever you try to use the value for, will be a type error, because the compiler has no way to confirm it's actually the right type.
bhrar :: EMaybe -> String
bhrar' (EJust i) = replicate i '😌'
=====> Error couldn't match expected type Int with a
If a variable is not reflected in the return type it is considered existential. This is possible to define data ExMaybe = ExNothing | forall a. ExJust a but the argument to ExJust is completely useless. ExJust True and ExJust () both have type ExMaybe and are indistinguisable from the type system's perspective.
Here is the GADT syntax for both the original Maybe and the existential ExMaybe
{-# Language GADTs #-}
{-# Language LambdaCase #-}
{-# Language PolyKinds #-}
{-# Language ScopedTypeVariables #-}
{-# Language StandaloneKindSignatures #-}
{-# Language TypeApplications #-}
import Data.Kind (Type)
import Prelude hiding (Maybe(..))
type Maybe :: Type -> Type
data Maybe a where
Nothing :: Maybe a
Just :: a -> Maybe a
type ExMaybe :: Type
data ExMaybe where
ExNothing :: ExMaybe
ExJust :: a -> ExMaybe
You're question is like asking why a function f x = .. needs to specify its argument, there is the option of making the type argument invisible but this is very odd but the argument is still there even if invisible.
-- >> :t JUST
-- JUST :: a -> MAYBE
-- >> :t JUST 'a'
-- JUST 'a' :: MAYBE
type MAYBE :: forall (a :: Type). Type
data MAYBE where
NOTHING :: MAYBE #a
JUST :: a -> MAYBE #a
mAYBE :: b -> (a -> b) -> MAYBE #a -> b
mAYBE nOTHING jUST = \case
NOTHING -> nOTHING
JUST a -> jUST a
Having explicit type parameters makes it much more expressive. You lose so much information without it. For example, how would you write the type of map? Or functors in general?
map :: (a -> b) -> [a] -> [b]
This version says almost nothing about what’s going on
map :: (a -> b) -> [] -> []
Or even worse, head:
head :: [] -> a
Now we suddenly have access to unsafe coerce and zero type safety at all.
unsafeCoerce :: a -> b
unsafeCoerce x = head [x]
But we don’t just lose safety, we also lose the ability to do some things. For example if we want to read something into a list or Maybe, we can no longer specify what kind of list we want.
read :: Read a => a
example :: [Int] -> String
main = do
xs <- getLine
putStringLine (example xs)
This program would be impossible to write without lists having an explicit type parameter. (Or rather, read would be unable to have different implementations for different list types, since content type is now opaque)
It is however, as was mentioned by others, still possible to define a similar type by using the ExistentialQuantification extension. But in those cases you are very limited in how you can use those data types, since you cannot know what they contain.

Is this use of GADTs fully equivalent to existential types?

Existentially quantified data constructors like
data Foo = forall a. MkFoo a (a -> Bool)
| Nil
can be easily translated to GADTs:
data Foo where
MkFoo :: a -> (a -> Bool) -> Foo
Nil :: Foo
Are there any differences between them: code which compiles with one but not another, or gives different results?
They are nearly equivalent, albeit not completely so, depending on which extensions you turn on.
First of all, note that you don't need to enable the GADTs extension to use the data .. where syntax for existential types. It suffices to enable the following lesser extensions.
{-# LANGUAGE GADTSyntax #-}
{-# LANGUAGE ExistentialQuantification #-}
With these extensions, you can compile
data U where
U :: a -> (a -> String) -> U
foo :: U -> String
foo (U x f) = f x
g x = let h y = const y x
in (h True, h 'a')
The above code also compiles if we replace the extensions and the type definition with
{-# LANGUAGE ExistentialQuantification #-}
data U = forall a . U a (a -> String)
The above code, however, does not compile with the GADTs extension turned on! This is because GADTs also turns on the MonoLocalBinds extension, which prevents the above definition of g to compile. This is because the latter extension prevents h to receive a polymorphic type.
From the documentation:
Notice that GADT-style syntax generalises existential types (Existentially quantified data constructors). For example, these two declarations are equivalent:
data Foo = forall a. MkFoo a (a -> Bool)
data Foo' where { MKFoo :: a -> (a->Bool) -> Foo' }
(emphasis on the word equivalent)
The latter isn't actually a GADT - it's an existentially quantified data type declared with GADT syntax. As such, it is identical to the former.
The reason it's not a GADT is that there is no type variable that gets refined based on the choice of constructor. That's the key new functionality added by GADTs. If you have a GADT like this:
data Foo a where
StringFoo :: String -> Foo String
IntFoo :: Int -> Foo Int
Then pattern-matching on each constructor reveals additional information that can be used inside the matching clause. For instance:
deconstructFoo :: Foo a -> a
deconstructFoo (StringFoo s) = "Hello! " ++ s ++ " is a String!"
deconstructFoo (IntFoo i) = i * 3 + 1
Notice that something very interesting is happening there, from the point of view of the type system. deconstructFoo promises it will work for any choice of a, as long as it's passed a value of type Foo a. But then the first equation returns a String, and the second equation returns an Int.
This is what you cannot do with a regular data type, and the new thing GADTs provide. In the first equation, the pattern match adds the constraint (a ~ String) to its context. In the second equation, the pattern match adds (a ~ Int).
If you haven't created a type where pattern-matching can cause type refinement, you don't have a GADT. You just have a type declared with GADT syntax. Which is fine - in a lot of ways, it's a better syntax than the basic data type syntax. It's just more verbose for the easiest cases.

Can't properly define transformation from universal type, that defined with GADT

I've defined an universal data type that can contain anything (well, with current implementation not totally anything)!
Here it is (complete code):
{-#LANGUAGE NoMonomorphismRestriction#-}
{-#LANGUAGE GADTs#-}
{-#LANGUAGE StandaloneDeriving#-}
data AnyT where
Any :: (Show a, Read a) => a -> AnyT
readAnyT :: (Read a, Show a) => (String -> a) -> String -> AnyT
readAnyT readFun str = Any $ readFun str
showAnyT :: AnyT -> String
showAnyT (Any thing) = show thing
deriving instance Show AnyT --Just for convinience!
a = [Any "Hahaha", Any 123]
And I can play with it in console:
*Main> a
[Any "Hahaha",Any 123]
it :: [AnyT]
*Main> readAnyT (read::String->Float) "134"
Any 134.0
it :: AnyT
*Main> showAnyT $ Any 125
"125"
it :: String
Well, I have it, but I need to process it somehow. For example, let's define transformation functions (functions definition, add to previous code):
toAnyT :: (Show a, Read a) => a -> AnyT -- Rather useless
toAnyT a = Any a
fromAny :: AnyT -> a
fromAny (Any thing) = thing
And there is the problem! the fromAny definition from previous code is incorrect! And I don't know how to make it correct. I get the error in GHCi:
2.hs:18:23:
Could not deduce (a ~ a1)
from the context (Show a1, Read a1)
bound by a pattern with constructor
Any :: forall a. (Show a, Read a) => a -> AnyT,
in an equation for `fromAny'
at 2.hs:18:10-18
`a' is a rigid type variable bound by
the type signature for fromAny :: AnyT -> a at 2.hs:17:12
`a1' is a rigid type variable bound by
a pattern with constructor
Any :: forall a. (Show a, Read a) => a -> AnyT,
in an equation for `fromAny'
at 2.hs:18:10
In the expression: thing
In an equation for `fromAny': fromAny (Any thing) = thing
Failed, modules loaded: none.
I tried some other ways that giving errors too.
I have rather bad solution for this: defining necessary functions via showAnyT and read (replace previous function definitions):
toAnyT :: (Show a, Read a) => a -> AnyT -- Rather useless
toAnyT a = Any a
fromAny :: Read a => AnyT -> a
fromAny thing = read (showAnyT thing)
Yes, it's work. I can play with it:
*Main> fromAny $ Any 1352 ::Float
1352.0
it :: Float
*Main> fromAny $ Any 1352 ::Int
1352
it :: Int
*Main> fromAny $ Any "Haha" ::String
"Haha"
it :: String
But I think it's bad, because it uses string to transform.
Could you please help me to find neat and good solution?
First a disclaimer: I don't know the whole context of the problem you are trying to solve, but the first impression I get is that this kind of use of existentials is the wrong tool for the job and you might be trying to implement some code pattern that is common in object-oriented languaged but a poor fit for Haskell.
That said, existential types like the one you have here are usually like black holes where once you put something in, the type information is lost forever and you can't cast the value back to its original type. However, you can operate on existential values via typeclasses (as you've done with Show and Read) so you can use the typeclass Typeable to retain the original type information:
import Data.Typeable
data AnyT where
Any :: (Show a, Read a, Typeable a) => a -> AnyT
Now you can implement all the functions you have, as long as you add the new constraint to them as well:
readAnyT :: (Read a, Show a, Typeable a) => (String -> a) -> String -> AnyT
readAnyT readFun str = Any $ readFun str
showAnyT :: AnyT -> String
showAnyT (Any thing) = show thing
toAnyT :: (Show a, Read a, Typeable a) => a -> AnyT -- Rather useless
toAnyT a = Any a
fromAny can be implemented as returning a Maybe a (since you cannot be sure if the value you are getting out is of the type you are expecting).
fromAny :: Typeable a => AnyT -> Maybe a
fromAny (Any thing) = cast thing
You're using GADTs to create an existential data type. The type a in the constructor existed, but there's no way to recover it. The only information available to you is that it has Show and Read instances. The exact type is forgotten, because that's what your constructor's type instructs the type system to do. "Make sure this type has the proper instances, then forget what it is."
There is one function you've missed, by the way:
readLike :: String -> AnyT -> AnyT
readLike s (Any a) = Any $ read s `asTypeOf` a
Within the context of the pattern match, the compiler knows that whatever type a has, there is a Read instance, and it can apply that instance. Even though it's not sure what type a is. But all it can do with it is either show it, or read strings as the same type as it.
What you have is something called Existential type. If you follow that link than you will find that in this pattern the only way to work with the "data" inside the container type is to use type classes.
In your current example you mentioned that a should have Read and Show instances and that means only the functions in these type classes can be used on a and nothing else and if you want to support some more operations on a then it should be constrained with the required type class.
Think it like this: You can put anything in a box. Now when you extract something out of that box you have no way to specify what you will get out of it as you can put anything inside it. Now if you say that you can put any eatable inside this box, then you are sure that when you pick something from this box it will be eatable.

Programmatic type annotations in Haskell

When metaprogramming, it may be useful (or necessary) to pass along to Haskell's type system information about types that's known to your program but not inferable in Hindley-Milner. Is there a library (or language extension, etc) that provides facilities for doing this—that is, programmatic type annotations—in Haskell?
Consider a situation where you're working with a heterogenous list (implemented using the Data.Dynamic library or existential quantification, say) and you want to filter the list down to a bog-standard, homogeneously typed Haskell list. You can write a function like
import Data.Dynamic
import Data.Typeable
dynListToList :: (Typeable a) => [Dynamic] -> [a]
dynListToList = (map fromJust) . (filter isJust) . (map fromDynamic)
and call it with a manual type annotation. For example,
foo :: [Int]
foo = dynListToList [ toDyn (1 :: Int)
, toDyn (2 :: Int)
, toDyn ("foo" :: String) ]
Here foo is the list [1, 2] :: [Int]; that works fine and you're back on solid ground where Haskell's type system can do its thing.
Now imagine you want to do much the same thing but (a) at the time you write the code you don't know what the type of the list produced by a call to dynListToList needs to be, yet (b) your program does contain the information necessary to figure this out, only (c) it's not in a form accessible to the type system.
For example, say you've randomly selected an item from your heterogenous list and you want to filter the list down by that type. Using the type-checking facilities supplied by Data.Typeable, your program has all the information it needs to do this, but as far as I can tell—this is the essence of the question—there's no way to pass it along to the type system. Here's some pseudo-Haskell that shows what I mean:
import Data.Dynamic
import Data.Typeable
randList :: (Typeable a) => [Dynamic] -> IO [a]
randList dl = do
tr <- randItem $ map dynTypeRep dl
return (dynListToList dl :: [<tr>]) -- This thing should have the type
-- represented by `tr`
(Assume randItem selects a random item from a list.)
Without a type annotation on the argument of return, the compiler will tell you that it has an "ambiguous type" and ask you to provide one. But you can't provide a manual type annotation because the type is not known at write-time (and can vary); the type is known at run-time, however—albeit in a form the type system can't use (here, the type needed is represented by the value tr, a TypeRep—see Data.Typeable for details).
The pseudo-code :: [<tr>] is the magic I want to happen. Is there any way to provide the type system with type information programatically; that is, with type information contained in a value in your program?
Basically I'm looking for a function with (pseudo-) type ??? -> TypeRep -> a that takes a value of a type unknown to Haskell's type system and a TypeRep and says, "Trust me, compiler, I know what I'm doing. This thing has the value represented by this TypeRep." (Note that this is not what unsafeCoerce does.)
Or is there something completely different that gets me the same place? For example, I can imagine a language extension that permits assignment to type variables, like a souped-up version of the extension enabling scoped type variables.
(If this is impossible or highly impractical,—e.g., it requires packing a complete GHCi-like interpreter into the executable—please try to explain why.)
No, you can't do this. The long and short of it is that you're trying to write a dependently-typed function, and Haskell isn't a dependently typed language; you can't lift your TypeRep value to a true type, and so there's no way to write down the type of your desired function. To explain this in a little more detail, I'm first going to show why the way you've phrased the type of randList doesn't really make sense. Then, I'm going to explain why you can't do what you want. Finally, I'll briefly mention a couple thoughts on what to actually do.
Existentials
Your type signature for randList can't mean what you want it to mean. Remembering that all type variables in Haskell are universally quantified, it reads
randList :: forall a. Typeable a => [Dynamic] -> IO [a]
Thus, I'm entitled to call it as, say, randList dyns :: IO [Int] anywhere I want; I must be able to provide a return value for all a, not simply for some a. Thinking of this as a game, it's one where the caller can pick a, not the function itself. What you want to say (this isn't valid Haskell syntax, although you can translate it into valid Haskell by using an existential data type1) is something more like
randList :: [Dynamic] -> (exists a. Typeable a => IO [a])
This promises that the elements of the list are of some type a, which is an instance of Typeable, but not necessarily any such type. But even with this, you'll have two problems. First, even if you could construct such a list, what could you do with it? And second, it turns out that you can't even construct it in the first place.
Since all that you know about the elements of the existential list is that they're instances of Typeable, what can you do with them? Looking at the documentation, we see that there are only two functions2 which take instances of Typeable:
typeOf :: Typeable a => a -> TypeRep, from the type class itself (indeed, the only method therein); and
cast :: (Typeable a, Typeable b) => a -> Maybe b (which is implemented with unsafeCoerce, and couldn't be written otherwise).
Thus, all that you know about the type of the elements in the list is that you can call typeOf and cast on them. Since we'll never be able to usefully do anything else with them, our existential might just as well be (again, not valid Haskell)
randList :: [Dynamic] -> IO [(TypeRep, forall b. Typeable b => Maybe b)]
This is what we get if we apply typeOf and cast to every element of our list, store the results, and throw away the now-useless existentially typed original value. Clearly, the TypeRep part of this list isn't useful. And the second half of the list isn't either. Since we're back to a universally-quantified type, the caller of randList is once again entitled to request that they get a Maybe Int, a Maybe Bool, or a Maybe b for any (typeable) b of their choosing. (In fact, they have slightly more power than before, since they can instantiate different elements of the list to different types.) But they can't figure out what type they're converting from unless they already know it—you've still lost the type information you were trying to keep.
And even setting aside the fact that they're not useful, you simply can't construct the desired existential type here. The error arises when you try to return the existentially-typed list (return $ dynListToList dl). At what specific type are you calling dynListToList? Recall that dynListToList :: forall a. Typeable a => [Dynamic] -> [a]; thus, randList is responsible for picking which a dynListToList is going to use. But it doesn't know which a to pick; again, that's the source of the question! So the type that you're trying to return is underspecified, and thus ambiguous.3
Dependent types
OK, so what would make this existential useful (and possible)? Well, we actually have slightly more information: not only do we know there's some a, we have its TypeRep. So maybe we can package that up:
randList :: [Dynamic] -> (exists a. Typeable a => IO (TypeRep,[a]))
This isn't quite good enough, though; the TypeRep and the [a] aren't linked at all. And that's exactly what you're trying to express: some way to link the TypeRep and the a.
Basically, your goal is to write something like
toType :: TypeRep -> *
Here, * is the kind of all types; if you haven't seen kinds before, they are to types what types are to values. * classifies types, * -> * classifies one-argument type constructors, etc. (For instance, Int :: *, Maybe :: * -> *, Either :: * -> * -> *, and Maybe Int :: *.)
With this, you could write (once again, this code isn't valid Haskell; in fact, it really bears only a passing resemblance to Haskell, as there's no way you could write it or anything like it within Haskell's type system):
randList :: [Dynamic] -> (exists (tr :: TypeRep).
Typeable (toType tr) => IO (tr, [toType tr]))
randList dl = do
tr <- randItem $ map dynTypeRep dl
return (tr, dynListToList dl :: [toType tr])
-- In fact, in an ideal world, the `:: [toType tr]` signature would be
-- inferable.
Now, you're promising the right thing: not that there exists some type which classifies the elements of the list, but that there exists some TypeRep such that its corresponding type classifies the elements of the list. If only you could do this, you would be set. But writing toType :: TypeRep -> * is completely impossible in Haskell: doing this requires a dependently-typed language, since toType tr is a type which depends on a value.
What does this mean? In Haskell, it's perfectly acceptable for values to depend on other values; this is what a function is. The value head "abc", for instance, depends on the value "abc". Similarly, we have type constructors, so it's acceptable for types to depend on other types; consider Maybe Int, and how it depends on Int. We can even have values which depend on types! Consider id :: a -> a. This is really a family of functions: id_Int :: Int -> Int, id_Bool :: Bool -> Bool, etc. Which one we have depends on the type of a. (So really, id = \(a :: *) (x :: a) -> x; although we can't write this in Haskell, there are languages where we can.)
Crucially, however, we can never have a type that depends on a value. We might want such a thing: imagine Vec 7 Int, the type of length-7 lists of integers. Here, Vec :: Nat -> * -> *: a type whose first argument must be a value of type Nat. But we can't write this sort of thing in Haskell.4 Languages which support this are called dependently-typed (and will let us write id as we did above); examples include Coq and Agda. (Such languages often double as proof assistants, and are generally used for research work as opposed to writing actual code. Dependent types are hard, and making them useful for everyday programming is an active area of research.)
Thus, in Haskell, we can check everything about our types first, throw away all that information, and then compile something that refers only to values. In fact, this is exactly what GHC does; since we can never check types at run-time in Haskell, GHC erases all the types at compile-time without changing the program's run-time behavior. This is why unsafeCoerce is easy to implement (operationally) and completely unsafe: at run-time, it's a no-op, but it lies to the type system. Consequently, something like toType is completely impossible to implement in the Haskell type system.
In fact, as you noticed, you can't even write down the desired type and use unsafeCoerce. For some problems, you can get away with this; we can write down the type for the function, but only implement it with by cheating. That's exactly how fromDynamic works. But as we saw above, there's not even a good type to give to this problem from within Haskell. The imaginary toType function allows you to give the program a type, but you can't even write down toType's type!
What now?
So, you can't do this. What should you do? My guess is that your overall architecture isn't ideal for Haskell, although I haven't seen it; Typeable and Dynamic don't actually show up that much in Haskell programs. (Perhaps you're "speaking Haskell with a Python accent", as they say.) If you only have a finite set of data types to deal with, you might be able to bundle things into a plain old algebraic data type instead:
data MyType = MTInt Int | MTBool Bool | MTString String
Then you can write isMTInt, and just use filter isMTInt, or filter (isSameMTAs randomMT).
Although I don't know what it is, there's probably a way you could unsafeCoerce your way through this problem. But frankly, that's not a good idea unless you really, really, really, really, really, really know what you're doing. And even then, it's probably not. If you need unsafeCoerce, you'll know, it won't just be a convenience thing.
I really agree with Daniel Wagner's comment: you're probably going to want to rethink your approach from scratch. Again, though, since I haven't seen your architecture, I can't say what that will mean. Maybe there's another Stack Overflow question in there, if you can distill out a concrete difficulty.
1 That looks like the following:
{-# LANGUAGE ExistentialQuantification #-}
data TypeableList = forall a. Typeable a => TypeableList [a]
randList :: [Dynamic] -> IO TypeableList
However, since none of this code compiles anyway, I think writing it out with exists is clearer.
2 Technically, there are some other functions which look relevant, such as toDyn :: Typeable a => a -> Dynamic and fromDyn :: Typeable a => Dynamic -> a -> a. However, Dynamic is more or less an existential wrapper around Typeables, relying on typeOf and TypeReps to know when to unsafeCoerce (GHC uses some implementation-specific types and unsafeCoerce, but you could do it this way, with the possible exception of dynApply/dynApp), so toDyn doesn't do anything new. And fromDyn doesn't really expect its argument of type a; it's just a wrapper around cast. These functions, and the other similar ones, don't provide any extra power that isn't available with just typeOf and cast. (For instance, going back to a Dynamic isn't very useful for your problem!)
3 To see the error in action, you can try to compile the following complete Haskell program:
{-# LANGUAGE ExistentialQuantification #-}
import Data.Dynamic
import Data.Typeable
import Data.Maybe
randItem :: [a] -> IO a
randItem = return . head -- Good enough for a short and non-compiling example
dynListToList :: Typeable a => [Dynamic] -> [a]
dynListToList = mapMaybe fromDynamic
data TypeableList = forall a. Typeable a => TypeableList [a]
randList :: [Dynamic] -> IO TypeableList
randList dl = do
tr <- randItem $ map dynTypeRep dl
return . TypeableList $ dynListToList dl -- Error! Ambiguous type variable.
Sure enough, if you try to compile this, you get the error:
SO12273982.hs:17:27:
Ambiguous type variable `a0' in the constraint:
(Typeable a0) arising from a use of `dynListToList'
Probable fix: add a type signature that fixes these type variable(s)
In the second argument of `($)', namely `dynListToList dl'
In a stmt of a 'do' block: return . TypeableList $ dynListToList dl
In the expression:
do { tr <- randItem $ map dynTypeRep dl;
return . TypeableList $ dynListToList dl }
But as is the entire point of the question, you can't "add a type signature that fixes these type variable(s)", because you don't know what type you want.
4 Mostly. GHC 7.4 has support for lifting types to kinds and for kind polymorphism; see section 7.8, "Kind polymorphism and promotion", in the GHC 7.4 user manual. This doesn't make Haskell dependently typed—something like TypeRep -> * example is still out5—but you will be able to write Vec by using very expressive types that look like values.
5 Technically, you could now write down something which looks like it has the desired type: type family ToType :: TypeRep -> *. However, this takes a type of the promoted kind TypeRep, and not a value of the type TypeRep; and besides, you still wouldn't be able to implement it. (At least I don't think so, and I can't see how you would—but I am not an expert in this.) But at this point, we're pretty far afield.
What you're observing is that the type TypeRep doesn't actually carry any type-level information along with it; only term-level information. This is a shame, but we can do better when we know all the type constructors we care about. For example, suppose we only care about Ints, lists, and function types.
{-# LANGUAGE GADTs, TypeOperators #-}
import Control.Monad
data a :=: b where Refl :: a :=: a
data Dynamic where Dynamic :: TypeRep a -> a -> Dynamic
data TypeRep a where
Int :: TypeRep Int
List :: TypeRep a -> TypeRep [a]
Arrow :: TypeRep a -> TypeRep b -> TypeRep (a -> b)
class Typeable a where typeOf :: TypeRep a
instance Typeable Int where typeOf = Int
instance Typeable a => Typeable [a] where typeOf = List typeOf
instance (Typeable a, Typeable b) => Typeable (a -> b) where
typeOf = Arrow typeOf typeOf
congArrow :: from :=: from' -> to :=: to' -> (from -> to) :=: (from' -> to')
congArrow Refl Refl = Refl
congList :: a :=: b -> [a] :=: [b]
congList Refl = Refl
eq :: TypeRep a -> TypeRep b -> Maybe (a :=: b)
eq Int Int = Just Refl
eq (Arrow from to) (Arrow from' to') = liftM2 congArrow (eq from from') (eq to to')
eq (List t) (List t') = liftM congList (eq t t')
eq _ _ = Nothing
eqTypeable :: (Typeable a, Typeable b) => Maybe (a :=: b)
eqTypeable = eq typeOf typeOf
toDynamic :: Typeable a => a -> Dynamic
toDynamic a = Dynamic typeOf a
-- look ma, no unsafeCoerce!
fromDynamic_ :: TypeRep a -> Dynamic -> Maybe a
fromDynamic_ rep (Dynamic rep' a) = case eq rep rep' of
Just Refl -> Just a
Nothing -> Nothing
fromDynamic :: Typeable a => Dynamic -> Maybe a
fromDynamic = fromDynamic_ typeOf
All of the above is pretty standard. For more on the design strategy, you'll want to read about GADTs and singleton types. Now, the function you want to write follows; the type is going to look a bit daft, but bear with me.
-- extract only the elements of the list whose type match the head
firstOnly :: [Dynamic] -> Dynamic
firstOnly [] = Dynamic (List Int) []
firstOnly (Dynamic rep v:xs) = Dynamic (List rep) (v:go xs) where
go [] = []
go (Dynamic rep' v:xs) = case eq rep rep' of
Just Refl -> v : go xs
Nothing -> go xs
Here we've picked a random element (I rolled a die, and it came up 1) and extracted only the elements that have a matching type from the list of dynamic values. Now, we could have done the same thing with regular boring old Dynamic from the standard libraries; however, what we couldn't have done is used the TypeRep in a meaningful way. I now demonstrate that we can do so: we'll pattern match on the TypeRep, and then use the enclosed value at the specific type the TypeRep tells us it is.
use :: Dynamic -> [Int]
use (Dynamic (List (Arrow Int Int)) fs) = zipWith ($) fs [1..]
use (Dynamic (List Int) vs) = vs
use (Dynamic Int v) = [v]
use (Dynamic (Arrow (List Int) (List (List Int))) f) = concat (f [0..5])
use _ = []
Note that on the right-hand sides of these equations, we are using the wrapped value at different, concrete types; the pattern match on the TypeRep is actually introducing type-level information.
You want a function that chooses a different type of values to return based on runtime data. Okay, great. But the whole purpose of a type is to tell you what operations can be performed on a value. When you don't know what type will be returned from a function, what do you do with the values it returns? What operations can you perform on them? There are two options:
You want to read the type, and perform some behaviour based on which type it is. In this case you can only cater for a finite list of types known in advance, essentially by testing "is it this type? then we do this operation...". This is easily possible in the current Dynamic framework: just return the Dynamic objects, using dynTypeRep to filter them, and leave the application of fromDynamic to whoever wants to consume your result. Moreover, it could well be possible without Dynamic, if you don't mind setting the finite list of types in your producer code, rather than your consumer code: just use an ADT with a constructor for each type, data Thing = Thing1 Int | Thing2 String | Thing3 (Thing,Thing). This latter option is by far the best if it is possible.
You want to perform some operation that works across a family of types, potentially some of which you don't know about yet, e.g. by using type class operations. This is trickier, and it's tricky conceptually too, because your program is not allowed to change behaviour based on whether or not some type class instance exists – it's an important property of the type class system that the introduction of a new instance can either make a program type check or stop it from type checking, but it can't change the behaviour of a program. Hence you can't throw an error if your input list contains inappropriate types, so I'm really not sure that there's anything you can do that doesn't essentially involve falling back to the first solution at some point.

Is there a type 'Any' in haskell?

Say, I want to define a record Attribute like this:
data Attribute = Attribute {name :: String, value :: Any}
This is not valid haskell code of course. But is there a type 'Any' which basically say any type will do? Or is to use type variable the only way?
data Attribute a = Attribute {name :: String, value :: a}
Generally speaking, Any types aren't very useful. Consider: If you make a polymorphic list that can hold anything, what can you do with the types in the list? The answer, of course, is nothing - you have no guarantee that there is any operation common to these elements.
What one will typically do is either:
Use GADTs to make a list that can contain elements of a specific typeclass, as in:
data FooWrap where
FooWrap :: Foo a => a -> FooWrap
type FooList = [FooWrap]
With this approach, you don't know the concrete type of the elements, but you know they can be manipulated using elements of the Foo typeclass.
Create a type to switch between specific concrete types contained in the list:
data FooElem = ElemFoo Foo | ElemBar Bar
type FooList = [FooElem]
This can be combined with approach 1 to create a list that can hold elements that are of one of a fixed set of typeclasses.
In some cases, it can be helpful to build a list of manipulation functions:
type FooList = [Int -> IO ()]
This is useful for things like event notification systems. At the time of adding an element to the list, you bind it up in a function that performs whatever manipulation you'll later want to do.
Use Data.Dynamic (not recommended!) as a cheat. However, this provides no guarantee that a specific element can be manipulated at all, and so the above approaches should be preferred.
Adding to bdonlan's answer: Instead of GADTs, you can also use existential types:
{-# LANGUAGE ExistentialQuantification #-}
class Foo a where
foo :: a -> a
data AnyFoo = forall a. Foo a => AnyFoo a
instance Foo AnyFoo where
foo (AnyFoo a) = AnyFoo $ foo a
mapFoo :: [AnyFoo] -> [AnyFoo]
mapFoo = map foo
This is basically equivalent to bdonlan's GADT solution, but doesn't impose the choice of data structure on you - you can use a Map instead of a list, for example:
import qualified Data.Map as M
mFoo :: M.Map String AnyFoo
mFoo = M.fromList [("a", AnyFoo SomeFoo), ("b", AnyFoo SomeBar)]
The data AnyFoo = forall a. Foo a => AnyFoo a bit can also be written in GADT notation as:
data AnyFoo where
AnyFoo :: Foo a => a -> AnyFoo
There is the type Dynamic from Data.Dynamic which can hold anything (well, anything Typeable). But that is rarely the right way to do it. What is the problem that you are trying to solve?
This sounds like a pretty basic question, so I'm going to give an even more basic answer than anybody else. Here's what is almost always the right solution:
data Attribute a = Attribute { name :: String, value :: a }
Then, if you want an attribute that wraps an Int, that attribute would have type Attribute Int, or an attribute that wraps a Bool would have type Attribute Bool, etc. You can create these attributes with values of any type; for example, we can write
testAttr = Attribute { name = "this is only a test", value = Node 3 [] }
to create a value of type Attribute (Tree Int).
If your data needs to be eventually a specific type, You could use Convertible with GADTs. Because as consumer, you are only interested in a the datatype you need to consume.
{-# LANGUAGE GADTs #-}
import Data.Convertible
data Conv b where
Conv :: a -> (a -> b) -> Conv b
Chain :: Conv b -> (b -> c) -> Conv c
unconv :: (Conv b) -> b
unconv (Conv a f) = f a
unconv (Chain c f) = f $ unconv c
conv :: Convertible a b => a -> Conv b
conv a = (Conv a convert)
totype :: Convertible b c => Conv b -> Conv c
totype a = Chain a convert
It is not very difficult to derive functor, comonad and monad instances for this. I can post them if you are interested.
Daniel Wagner response is the right one: almost in 90% of cases using a polymorphic type is all that you need.
All the other responses are useful for the remaining 10% of cases, but if you have still no good knowledge of polymorphism as to ask this question, it will be extremely complicated to understand GADTs or Existential Types...
My advice is "keep it as simple as possible".

Resources