Basic pyspark results in Py4JJavaError - python-3.x

I am encountering an error for something that was working only 30 minutes ago (and I haven't made any changes). I am using Spark 2.3.0, and Python 3.5.4. I have a SparkSession called spark, and I am simply trying to see the list of tables:
spark.catalog.listTables()
This is now causing the following error:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-9-e71b94cb765f> in <module>()
----> 1 spark.catalog.listTables()
~/spark-2.3.0-bin-hadoop2.7/python/pyspark/sql/catalog.py in listTables(self, dbName)
82 iter = self._jcatalog.listTables(dbName).toLocalIterator()
83 tables = []
---> 84 while iter.hasNext():
85 jtable = iter.next()
86 tables.append(Table(
~/spark-2.3.0-bin-hadoop2.7/python/lib/py4j-0.10.6-src.zip/py4j/java_gateway.py in __call__(self, *args)
1158 answer = self.gateway_client.send_command(command)
1159 return_value = get_return_value(
-> 1160 answer, self.gateway_client, self.target_id, self.name)
1161
1162 for temp_arg in temp_args:
~/spark-2.3.0-bin-hadoop2.7/python/pyspark/sql/utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
~/spark-2.3.0-bin-hadoop2.7/python/lib/py4j-0.10.6-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
318 raise Py4JJavaError(
319 "An error occurred while calling {0}{1}{2}.\n".
--> 320 format(target_id, ".", name), value)
321 else:
322 raise Py4JError(
Py4JJavaError: An error occurred while calling o33.hasNext.
: java.lang.IllegalArgumentException
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.spark.util.ClosureCleaner$.getClassReader(ClosureCleaner.scala:46)
at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:449)
at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:432)
at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733)
at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:230)
at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40)
at scala.collection.mutable.HashMap$$anon$1.foreach(HashMap.scala:103)
at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732)
at org.apache.spark.util.FieldAccessFinder$$anon$3.visitMethodInsn(ClosureCleaner.scala:432)
at org.apache.xbean.asm5.ClassReader.a(Unknown Source)
at org.apache.xbean.asm5.ClassReader.b(Unknown Source)
at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)
at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)
at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:262)
at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:261)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:261)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:159)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2292)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2066)
at org.apache.spark.rdd.RDD$$anonfun$toLocalIterator$1.org$apache$spark$rdd$RDD$$anonfun$$collectPartition$1(RDD.scala:954)
at org.apache.spark.rdd.RDD$$anonfun$toLocalIterator$1$$anonfun$apply$30.apply(RDD.scala:956)
at org.apache.spark.rdd.RDD$$anonfun$toLocalIterator$1$$anonfun$apply$30.apply(RDD.scala:956)
at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:434)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:440)
at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:439)
at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:408)
at scala.collection.convert.Wrappers$IteratorWrapper.hasNext(Wrappers.scala:30)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:564)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.base/java.lang.Thread.run(Thread.java:844)
Calling the toPandas method on a Spark data frame is causing a similar error now, too. Any help is greatly appreciated!
EDIT: This is all taking place in a Jupyter notebook.

Turns out it was a Java (JDK) version issue. Once I reverted from version 9.0.4 back to JDK 8, this resolved the issue.

Related

Error when writing pyspark's dataframe into parquet

cleaned_mercury.write.mode('overwrite').parquet("../data/transformed-data/cleaned_mercury.parquet")
cleaned_mercury is a dataframe, whenever i try to convert the data into parquet it returns an error, i tried looking for answer everywhere but i couldn't find one
~\AppData\Local\Temp/ipykernel_19676/2099139696.py in <module>
----> 1 cleaned_mercury.write.mode('overwrite').parquet("../data/transformed-data/cleaned_mercury.parquet")
2 cleaned_watsons.write.mode('overwrite').parquet("../data/transformed-data/cleaned_watsons.parquet")
3 cleaned_tgp.write.mode('overwrite').parquet("../data/transformed-data/cleaned_tgp.parquet")
4 cleaned_ssd.write.mode('overwrite').parquet("../data/transformed-data/cleaned_ssd.parquet")
5 cleaned_rose.write.mode('overwrite').parquet("../data/transformed-data/cleaned_rose.parquet")
C:\spark-3.2.0-bin-hadoop3.2\python\pyspark\sql\readwriter.py in parquet(self, path, mode, partitionBy, compression)
883 self.partitionBy(partitionBy)
884 self._set_opts(compression=compression)
--> 885 self._jwrite.parquet(path)
886
887 def text(self, path, compression=None, lineSep=None):
C:\spark-3.2.0-bin-hadoop3.2\python\lib\py4j-0.10.9.2-src.zip\py4j\java_gateway.py in __call__(self, *args)
1307
1308 answer = self.gateway_client.send_command(command)
-> 1309 return_value = get_return_value(
1310 answer, self.gateway_client, self.target_id, self.name)
1311
C:\spark-3.2.0-bin-hadoop3.2\python\pyspark\sql\utils.py in deco(*a, **kw)
109 def deco(*a, **kw):
110 try:
--> 111 return f(*a, **kw)
112 except py4j.protocol.Py4JJavaError as e:
113 converted = convert_exception(e.java_exception)
C:\spark-3.2.0-bin-hadoop3.2\python\lib\py4j-0.10.9.2-src.zip\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
Py4JJavaError: An error occurred while calling o1594.parquet.
: org.apache.spark.SparkException: Job aborted.
at org.apache.spark.sql.errors.QueryExecutionErrors$.jobAbortedError(QueryExecutionErrors.scala:496)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:251)
at org.apache.spark.sql.execution.datasources.InsertIntoHadoopFsRelationCommand.run(InsertIntoHadoopFsRelationCommand.scala:186)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult$lzycompute(commands.scala:113)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.sideEffectResult(commands.scala:111)
at org.apache.spark.sql.execution.command.DataWritingCommandExec.executeCollect(commands.scala:125)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:110)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:110)
at org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:106)
at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:481)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:82)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:481)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:457)
at org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:106)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:93)
at org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:91)
at org.apache.spark.sql.execution.QueryExecution.assertCommandExecuted(QueryExecution.scala:128)
at org.apache.spark.sql.DataFrameWriter.runCommand(DataFrameWriter.scala:848)
at org.apache.spark.sql.DataFrameWriter.saveToV1Source(DataFrameWriter.scala:382)
at org.apache.spark.sql.DataFrameWriter.saveInternal(DataFrameWriter.scala:355)
at org.apache.spark.sql.DataFrameWriter.save(DataFrameWriter.scala:239)
at org.apache.spark.sql.DataFrameWriter.parquet(DataFrameWriter.scala:781)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
at java.lang.Thread.run(Unknown Source)
Caused by: java.lang.UnsatisfiedLinkError: org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Ljava/lang/String;I)Z
at org.apache.hadoop.io.nativeio.NativeIO$Windows.access0(Native Method)
at org.apache.hadoop.io.nativeio.NativeIO$Windows.access(NativeIO.java:793)
at org.apache.hadoop.fs.FileUtil.canRead(FileUtil.java:1215)
at org.apache.hadoop.fs.FileUtil.list(FileUtil.java:1420)
at org.apache.hadoop.fs.RawLocalFileSystem.listStatus(RawLocalFileSystem.java:601)
at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1972)
at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:2014)
at org.apache.hadoop.fs.ChecksumFileSystem.listStatus(ChecksumFileSystem.java:761)
at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:1972)
at org.apache.hadoop.fs.FileSystem.listStatus(FileSystem.java:2014)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.getAllCommittedTaskPaths(FileOutputCommitter.java:334)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.commitJobInternal(FileOutputCommitter.java:404)
at org.apache.hadoop.mapreduce.lib.output.FileOutputCommitter.commitJob(FileOutputCommitter.java:377)
at org.apache.parquet.hadoop.ParquetOutputCommitter.commitJob(ParquetOutputCommitter.java:48)
at org.apache.spark.internal.io.HadoopMapReduceCommitProtocol.commitJob(HadoopMapReduceCommitProtocol.scala:182)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.$anonfun$write$20(FileFormatWriter.scala:240)
at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
at org.apache.spark.util.Utils$.timeTakenMs(Utils.scala:605)
at org.apache.spark.sql.execution.datasources.FileFormatWriter$.write(FileFormatWriter.scala:240)
... 42 more
Turns out i dont have hadoop.dll installed, why do i figure out the answer on my own once i post my question here in stackoverflow https://github.com/steveloughran/winutils/blob/master/hadoop-2.7.1/bin/hadoop.dll

Issues in .show() in PySpark program

I have the set up for Anaconda, using Jupyter notebook to run my pyspark programs.
Issues are coming whenever I apply functions like join, rank(), I am not able to do a .show() function on the dataframe. for example, for below piece->
windowSpec = Window.partitionBy(func.col("Student_Class")).orderBy(func.col("Student_Marks"))
highDF = studentDF.withColumn('Rank', func.rank().over(windowSpec))
highestStud = highDF.filter(func.col("Rank") == 1).drop("Rank")
highestStud.printSchema()
All the above lines run fine without any issues, but whenever I do a .show(),
it is giving me the below issue.
Py4JJavaError Traceback (most recent call last)
<ipython-input-8-c08a2e669a91> in <module>
----> 1 highestStud.show() #issue coming here while dislaying !!
E:\BigData\spark-2.3.2-bin-hadoop2.7\python\pyspark\sql\dataframe.py in show(self, n, truncate, vertical)
348 """
349 if isinstance(truncate, bool) and truncate:
--> 350 print(self._jdf.showString(n, 20, vertical))
351 else:
352 print(self._jdf.showString(n, int(truncate), vertical))
E:\BigData\spark-2.3.2-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
E:\BigData\spark-2.3.2-bin-hadoop2.7\python\pyspark\sql\utils.py in deco(*a, **kw)
61 def deco(*a, **kw):
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
65 s = e.java_exception.toString()
E:\BigData\spark-2.3.2-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\protocol.py in get_return_value(answer, gateway_client, target_id, name)
326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
330 raise Py4JError(
Py4JJavaError: An error occurred while calling o64.showString.
: java.lang.IllegalArgumentException
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.xbean.asm5.ClassReader.<init>(Unknown Source)
at org.apache.spark.util.ClosureCleaner$.getClassReader(ClosureCleaner.scala:46)
at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:449)
at org.apache.spark.util.FieldAccessFinder$$anon$3$$anonfun$visitMethodInsn$2.apply(ClosureCleaner.scala:432)
at scala.collection.TraversableLike$WithFilter$$anonfun$foreach$1.apply(TraversableLike.scala:733)
at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
at scala.collection.mutable.HashMap$$anon$1$$anonfun$foreach$2.apply(HashMap.scala:103)
at scala.collection.mutable.HashTable$class.foreachEntry(HashTable.scala:230)
at scala.collection.mutable.HashMap.foreachEntry(HashMap.scala:40)
at scala.collection.mutable.HashMap$$anon$1.foreach(HashMap.scala:103)
at scala.collection.TraversableLike$WithFilter.foreach(TraversableLike.scala:732)
at org.apache.spark.util.FieldAccessFinder$$anon$3.visitMethodInsn(ClosureCleaner.scala:432)
at org.apache.xbean.asm5.ClassReader.a(Unknown Source)
at org.apache.xbean.asm5.ClassReader.b(Unknown Source)
at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)
at org.apache.xbean.asm5.ClassReader.accept(Unknown Source)
at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:262)
at org.apache.spark.util.ClosureCleaner$$anonfun$org$apache$spark$util$ClosureCleaner$$clean$14.apply(ClosureCleaner.scala:261)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.util.ClosureCleaner$.org$apache$spark$util$ClosureCleaner$$clean(ClosureCleaner.scala:261)
at org.apache.spark.util.ClosureCleaner$.clean(ClosureCleaner.scala:159)
at org.apache.spark.SparkContext.clean(SparkContext.scala:2299)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1.apply(RDD.scala:798)
at org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1.apply(RDD.scala:797)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:363)
at org.apache.spark.rdd.RDD.mapPartitions(RDD.scala:797)
at org.apache.spark.sql.execution.window.WindowExec.doExecute(WindowExec.scala:302)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.InputAdapter.inputRDDs(WholeStageCodegenExec.scala:371)
at org.apache.spark.sql.execution.FilterExec.inputRDDs(basicPhysicalOperators.scala:121)
at org.apache.spark.sql.execution.ProjectExec.inputRDDs(basicPhysicalOperators.scala:41)
at org.apache.spark.sql.execution.WholeStageCodegenExec.doExecute(WholeStageCodegenExec.scala:605)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:131)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$1.apply(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$executeQuery$1.apply(SparkPlan.scala:155)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.sql.execution.SparkPlan.executeQuery(SparkPlan.scala:152)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:127)
at org.apache.spark.sql.execution.SparkPlan.getByteArrayRdd(SparkPlan.scala:247)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:337)
at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3278)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2489)
at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2489)
at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3259)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:77)
at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3258)
at org.apache.spark.sql.Dataset.head(Dataset.scala:2489)
at org.apache.spark.sql.Dataset.take(Dataset.scala:2703)
at org.apache.spark.sql.Dataset.showString(Dataset.scala:254)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.base/java.lang.reflect.Method.invoke(Method.java:564)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.base/java.lang.Thread.run(Thread.java:832)

Facing Py4JJavaError while executing PySpark command

I am new to PySpark and tried to execute PySpark command and getting an error. Below are the commands I tried without issues.
from pyspark.sql import SparkSession
from pyspark import SparkContext
SS = SparkSession.builder.master("local[2]").appName("ProjectData").config("spark.executor.memory","1g").getOrCreate()
sc = SS.sparkContext
testData = sc.parallelize([3,6,4,2])
testData.count()
When I load the CSV file from my local file system, I am facing the following error while running the below code. I do not understand the error. Is there any issue in the Python Java connector and how to resolve this?
rdd1 = sc.textFile("/home/vijee/Python/mc1.csv")
rdd1.count()
Error:
---------------------------------------------------------------------------
Py4JJavaError Traceback (most recent call last)
<ipython-input-7-984ccbd7a083> in <module>
----> 1 rdd1.count()
~/spark-3.0.1-bin-hadoop2.7/python/pyspark/rdd.py in count(self)
1139 3
1140 """
-> 1141 return self.mapPartitions(lambda i: [sum(1 for _ in i)]).sum()
1142
1143 def stats(self):
~/spark-3.0.1-bin-hadoop2.7/python/pyspark/rdd.py in sum(self)
1130 6.0
1131 """
-> 1132 return self.mapPartitions(lambda x: [sum(x)]).fold(0, operator.add)
1133
1134 def count(self):
~/spark-3.0.1-bin-hadoop2.7/python/pyspark/rdd.py in fold(self, zeroValue, op)
1001 # zeroValue provided to each partition is unique from the one provided
1002 # to the final reduce call
-> 1003 vals = self.mapPartitions(func).collect()
1004 return reduce(op, vals, zeroValue)
1005
~/spark-3.0.1-bin-hadoop2.7/python/pyspark/rdd.py in collect(self)
887 """
888 with SCCallSiteSync(self.context) as css:
--> 889 sock_info = self.ctx._jvm.PythonRDD.collectAndServe(self._jrdd.rdd())
890 return list(_load_from_socket(sock_info, self._jrdd_deserializer))
891
~/spark-3.0.1-bin-hadoop2.7/python/lib/py4j-0.10.9-src.zip/py4j/java_gateway.py in __call__(self, *args)
1302
1303 answer = self.gateway_client.send_command(command)
-> 1304 return_value = get_return_value(
1305 answer, self.gateway_client, self.target_id, self.name)
1306
~/spark-3.0.1-bin-hadoop2.7/python/pyspark/sql/utils.py in deco(*a, **kw)
126 def deco(*a, **kw):
127 try:
--> 128 return f(*a, **kw)
129 except py4j.protocol.Py4JJavaError as e:
130 converted = convert_exception(e.java_exception)
~/spark-3.0.1-bin-hadoop2.7/python/lib/py4j-0.10.9-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
324 value = OUTPUT_CONVERTER[type](answer[2:], gateway_client)
325 if answer[1] == REFERENCE_TYPE:
--> 326 raise Py4JJavaError(
327 "An error occurred while calling {0}{1}{2}.\n".
328 format(target_id, ".", name), value)
Py4JJavaError: An error occurred while calling z:org.apache.spark.api.python.PythonRDD.collectAndServe.
: java.net.ConnectException: Call From vijee-Lenovo-IdeaPad-S510p/127.0.1.1 to localhost:9000 failed on connection exception: java.net.ConnectException: Connection refused; For more details see: http://wiki.apache.org/hadoop/ConnectionRefused
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.apache.hadoop.net.NetUtils.wrapWithMessage(NetUtils.java:792)
at org.apache.hadoop.net.NetUtils.wrapException(NetUtils.java:732)
at org.apache.hadoop.ipc.Client.call(Client.java:1480)
at org.apache.hadoop.ipc.Client.call(Client.java:1413)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:229)
at com.sun.proxy.$Proxy24.getFileInfo(Unknown Source)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.getFileInfo(ClientNamenodeProtocolTranslatorPB.java:776)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:191)
at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:102)
at com.sun.proxy.$Proxy25.getFileInfo(Unknown Source)
at org.apache.hadoop.hdfs.DFSClient.getFileInfo(DFSClient.java:2108)
at org.apache.hadoop.hdfs.DistributedFileSystem$22.doCall(DistributedFileSystem.java:1305)
at org.apache.hadoop.hdfs.DistributedFileSystem$22.doCall(DistributedFileSystem.java:1301)
at org.apache.hadoop.fs.FileSystemLinkResolver.resolve(FileSystemLinkResolver.java:81)
at org.apache.hadoop.hdfs.DistributedFileSystem.getFileStatus(DistributedFileSystem.java:1317)
at org.apache.hadoop.fs.Globber.getFileStatus(Globber.java:57)
at org.apache.hadoop.fs.Globber.glob(Globber.java:252)
at org.apache.hadoop.fs.FileSystem.globStatus(FileSystem.java:1676)
at org.apache.hadoop.mapred.FileInputFormat.singleThreadedListStatus(FileInputFormat.java:259)
at org.apache.hadoop.mapred.FileInputFormat.listStatus(FileInputFormat.java:229)
at org.apache.hadoop.mapred.FileInputFormat.getSplits(FileInputFormat.java:315)
at org.apache.spark.rdd.HadoopRDD.getPartitions(HadoopRDD.scala:205)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:276)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:272)
at org.apache.spark.rdd.MapPartitionsRDD.getPartitions(MapPartitionsRDD.scala:49)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:276)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:272)
at org.apache.spark.api.python.PythonRDD.getPartitions(PythonRDD.scala:55)
at org.apache.spark.rdd.RDD.$anonfun$partitions$2(RDD.scala:276)
at scala.Option.getOrElse(Option.scala:189)
at org.apache.spark.rdd.RDD.partitions(RDD.scala:272)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:2164)
at org.apache.spark.rdd.RDD.$anonfun$collect$1(RDD.scala:1004)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:388)
at org.apache.spark.rdd.RDD.collect(RDD.scala:1003)
at org.apache.spark.api.python.PythonRDD$.collectAndServe(PythonRDD.scala:168)
at org.apache.spark.api.python.PythonRDD.collectAndServe(PythonRDD.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.net.ConnectException: Connection refused
at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:716)
at org.apache.hadoop.net.SocketIOWithTimeout.connect(SocketIOWithTimeout.java:206)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:531)
at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:495)
at org.apache.hadoop.ipc.Client$Connection.setupConnection(Client.java:615)
at org.apache.hadoop.ipc.Client$Connection.setupIOstreams(Client.java:713)
at org.apache.hadoop.ipc.Client$Connection.access$2900(Client.java:376)
at org.apache.hadoop.ipc.Client.getConnection(Client.java:1529)
at org.apache.hadoop.ipc.Client.call(Client.java:1452)
... 53 more
Also below is the set up made in my .bashrc file in Ubuntu 20.04:
export JAVA_HOME=/usr/lib/jvm/java-8-openjdk-amd64
export PATH="$PATH:$JAVA_HOME/bin"
export PATH="/home/vijee/anaconda3/bin:$PATH"
export HADOOP_HOME=/home/vijee/hadoop-2.7.7
export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
export HADOOP_INSTALL=$HADOOP_HOME
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export PATH="$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin"
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib/native"
export SPARK_HOME=/home/vijee/spark-3.0.1-bin-hadoop2.7
export PATH="$PATH:/home/vijee/spark-3.0.1-bin-hadoop2.7/bin"
export PYTHONPATH=$SPARK_HOME/python/:$PYTHONPATH
export PYTHONPATH=$SPARK_HOME/python/lib/py4j-0.10.9-src.zip:$PYTHONPATH
export PYSPARK_PYTHON=/home/vijee/anaconda3/bin/python3
export PYSPARK_DRIVER_PYTHON=/home/vijee/anaconda3/bin/jupyter
export PYSPARK_DRIVER_PYTHON_OPTS="notebook"

How to configure Apache Spark 2.4.5 to connect to MySQL metastore of HIVE?

I am trying to run a Hive query using HiveContext object and receiving the following error:
Py4JJavaError
Traceback (most recent call last)
/usr/local/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
62 try:
---> 63 return f(*a, **kw)
64 except py4j.protocol.Py4JJavaError as e:
/usr/local/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
327 "An error occurred while calling {0}{1}{2}.\n".
--> 328 format(target_id, ".", name), value)
329 else:
Py4JJavaError: An error occurred while calling o864.sql.
: org.apache.spark.sql.AnalysisException: java.lang.RuntimeException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient;
at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:106)
at org.apache.spark.sql.hive.HiveExternalCatalog.databaseExists(HiveExternalCatalog.scala:214)
at org.apache.spark.sql.internal.SharedState.externalCatalog$lzycompute(SharedState.scala:114)
at org.apache.spark.sql.internal.SharedState.externalCatalog(SharedState.scala:102)
at org.apache.spark.sql.internal.SharedState.globalTempViewManager$lzycompute(SharedState.scala:141)
at org.apache.spark.sql.internal.SharedState.globalTempViewManager(SharedState.scala:136)
at org.apache.spark.sql.hive.HiveSessionStateBuilder$$anonfun$2.apply(HiveSessionStateBuilder.scala:55)
at org.apache.spark.sql.hive.HiveSessionStateBuilder$$anonfun$2.apply(HiveSessionStateBuilder.scala:55)
at org.apache.spark.sql.catalyst.catalog.SessionCatalog.globalTempViewManager$lzycompute(SessionCatalog.scala:91)
at org.apache.spark.sql.catalyst.catalog.SessionCatalog.globalTempViewManager(SessionCatalog.scala:91)
at org.apache.spark.sql.catalyst.catalog.SessionCatalog.isTemporaryTable(SessionCatalog.scala:736)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.isRunningDirectlyOnFiles(Analyzer.scala:747)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.resolveRelation(Analyzer.scala:681)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:713)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$$anonfun$apply$8.applyOrElse(Analyzer.scala:706)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$apply$1.apply(AnalysisHelper.scala:90)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$apply$1.apply(AnalysisHelper.scala:90)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:69)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:89)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:194)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$class.resolveOperatorsUp(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1$$anonfun$1.apply(AnalysisHelper.scala:87)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:328)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:186)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:326)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:87)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$$anonfun$resolveOperatorsUp$1.apply(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.allowInvokingTransformsInAnalyzer(AnalysisHelper.scala:194)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$class.resolveOperatorsUp(AnalysisHelper.scala:86)
at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.resolveOperatorsUp(LogicalPlan.scala:29)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:706)
at org.apache.spark.sql.catalyst.analysis.Analyzer$ResolveRelations$.apply(Analyzer.scala:652)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:87)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:84)
at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124)
at scala.collection.immutable.List.foldLeft(List.scala:84)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:84)
at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:76)
at scala.collection.immutable.List.foreach(List.scala:392)
at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:76)
at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:127)
at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:121)
at org.apache.spark.sql.catalyst.analysis.Analyzer$$anonfun$executeAndCheck$1.apply(Analyzer.scala:106)
at org.apache.spark.sql.catalyst.analysis.Analyzer$$anonfun$executeAndCheck$1.apply(Analyzer.scala:105)
at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper$.markInAnalyzer(AnalysisHelper.scala:201)
at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:105)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:58)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:56)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:48)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:78)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:642)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.RuntimeException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient
at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:522)
at org.apache.spark.sql.hive.client.HiveClientImpl.newState(HiveClientImpl.scala:185)
at org.apache.spark.sql.hive.client.HiveClientImpl.<init>(HiveClientImpl.scala:118)
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:271)
at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:384)
at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:286)
at org.apache.spark.sql.hive.HiveExternalCatalog.client$lzycompute(HiveExternalCatalog.scala:66)
at org.apache.spark.sql.hive.HiveExternalCatalog.client(HiveExternalCatalog.scala:65)
at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply$mcZ$sp(HiveExternalCatalog.scala:215)
at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:215)
at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:215)
at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:97)
... 64 more
Caused by: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient
at org.apache.hadoop.hive.metastore.MetaStoreUtils.newInstance(MetaStoreUtils.java:1523)
at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.<init>(RetryingMetaStoreClient.java:86)
at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:132)
at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:104)
at org.apache.hadoop.hive.ql.metadata.Hive.createMetaStoreClient(Hive.java:3005)
at org.apache.hadoop.hive.ql.metadata.Hive.getMSC(Hive.java:3024)
at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:503)
... 79 more
Caused by: java.lang.reflect.InvocationTargetException
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.apache.hadoop.hive.metastore.MetaStoreUtils.newInstance(MetaStoreUtils.java:1521)
... 85 more
Caused by: java.lang.NullPointerException
at org.apache.thrift.transport.TSocket.open(TSocket.java:209)
at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.open(HiveMetaStoreClient.java:420)
at org.apache.hadoop.hive.metastore.HiveMetaStoreClient.<init>(HiveMetaStoreClient.java:236)
at org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient.<init>(SessionHiveMetaStoreClient.java:74)
... 90 more
During handling of the above exception, another exception occurred:
AnalysisException Traceback (most recent call last)
<ipython-input-39-3bcaf444213a> in <module>
----> 1 df = sqlCtx.sql("select * from emp_master.emp_global")
/usr/local/spark/python/pyspark/sql/context.py in sql(self, sqlQuery)
356 [Row(f1=1, f2=u'row1'), Row(f1=2, f2=u'row2'), Row(f1=3, f2=u'row3')]
357 """
--> 358 return self.sparkSession.sql(sqlQuery)
359
360 #since(1.0)
/usr/local/spark/python/pyspark/sql/session.py in sql(self, sqlQuery)
765 [Row(f1=1, f2=u'row1'), Row(f1=2, f2=u'row2'), Row(f1=3, f2=u'row3')]
766 """
--> 767 return DataFrame(self._jsparkSession.sql(sqlQuery), self._wrapped)
768
769 #since(2.0)
/usr/local/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py in __call__(self, *args)
1255 answer = self.gateway_client.send_command(command)
1256 return_value = get_return_value(
-> 1257 answer, self.gateway_client, self.target_id, self.name)
1258
1259 for temp_arg in temp_args:
/usr/local/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
67 e.java_exception.getStackTrace()))
68 if s.startswith('org.apache.spark.sql.AnalysisException: '):
---> 69 raise AnalysisException(s.split(': ', 1)[1], stackTrace)
70 if s.startswith('org.apache.spark.sql.catalyst.analysis'):
71 raise AnalysisException(s.split(': ', 1)[1], stackTrace)
AnalysisException: 'java.lang.RuntimeException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient;'
I have placed the hive-site.xml file in the $SPARK_HOME/conf directory. Is there a step that I'm missing? Looking for some light into this error. I have a MySQL metastore for Hive, and it works perfect while running queries through Hive shell.
To configure hive mysql metastore to work with spark, copy the hive-site.xml from $HIVE_HOME/conf directory to $SPARK_HOME/conf directory and add the following property to the file.
<property>
<name>hive.metastore.uri</name>
<value>thrift://localhost:9083</value>
</property>
This enables external applications to interact with hive through thrift server.
Then, start hive metastore server and hiveserver2 by issuing the following commands.
hive —-service metastore
hive —-service hiveserver2
Now, you should be able to access hive from spark.

Jupyter Notebook connection to remote hive

I'm trying to get datas from Hive of our company's remote server. I use Anaconda3 (Windows 64-bit) and my Hadoop works on Ambari.
I've tryed to do smth like these ...
import findspark
findspark.init()
from pyspark import SparkContext, SparkConf
from pyspark.sql import HiveContext, SparkSession
sparkSession = (SparkSession.builder.appName('example-pyspark-read-from-hive').config("hive.metastore.uris","http://serv_ip:serv_port").enableHiveSupport().getOrCreate())
sparkSession.sql('show databases').show()
Maybe it's something wrong in my config? Maybe I should make some configs before all that in a Hive.
And the error is ...
<details>
<summary>Error </summary>
Py4JJavaError Traceback (most recent call last) D:\Alanuccio\Progs\spark-2.3.0-bin-hadoop2.7\python\pyspark\sql\utils.py in deco(*a, **kw) 62 try: ---> 63 return f(*a, **kw) 64 except py4j.protocol.Py4JJavaError as e: D:\Alanuccio\Progs\spark-2.3.0-bin-hadoop2.7\python\lib\py4j-0.10.6-src.zip\py4j\protocol.py
in get_return_value(answer, gateway_client, target_id, name) 319 "An error occurred while calling {0}{1}{2}.\n". --> 320 format(target_id, ".", name), value) 321 else: Py4JJavaError: An error occurred while calling o27.sql. : org.apache.spark.sql.AnalysisException:
java.lang.RuntimeException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient; at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:106) at org.apache.spark.sql.hive.HiveExternalCatalog.databaseExists(HiveExternalCatalog.scala:194)
at org.apache.spark.sql.internal.SharedState.externalCatalog$lzycompute(SharedState.scala:114) at org.apache.spark.sql.internal.SharedState.externalCatalog(SharedState.scala:102) at org.apache.spark.sql.hive.HiveSessionStateBuilder.externalCatalog(HiveSessionStateBuilder.scala:39)
at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog$lzycompute(HiveSessionStateBuilder.scala:54) at org.apache.spark.sql.hive.HiveSessionStateBuilder.catalog(HiveSessionStateBuilder.scala:52) at org.apache.spark.sql.hive.HiveSessionStateBuilder$$anon$1.
<init>(HiveSessionStateBuilder.scala:69) at org.apache.spark.sql.hive.HiveSessionStateBuilder.analyzer(HiveSessionStateBuilder.scala:69) at org.apache.spark.sql.internal.BaseSessionStateBuilder$$anonfun$build$2.apply(BaseSessionStateBuilder.scala:293) at
org.apache.spark.sql.internal.BaseSessionStateBuilder$$anonfun$build$2.apply(BaseSessionStateBuilder.scala:293) at org.apache.spark.sql.internal.SessionState.analyzer$lzycompute(SessionState.scala:79) at org.apache.spark.sql.internal.SessionState.analyzer(SessionState.scala:79)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:57) at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:55) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:47)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:74) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:638) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:214) at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.RuntimeException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:522) at org.apache.spark.sql.hive.client.HiveClientImpl.newState(HiveClientImpl.scala:180)
at org.apache.spark.sql.hive.client.HiveClientImpl.
<init>(HiveClientImpl.scala:114) at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
at java.lang.reflect.Constructor.newInstance(Constructor.java:423) at org.apache.spark.sql.hive.client.IsolatedClientLoader.createClient(IsolatedClientLoader.scala:264) at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:385)
at org.apache.spark.sql.hive.HiveUtils$.newClientForMetadata(HiveUtils.scala:287) at org.apache.spark.sql.hive.HiveExternalCatalog.client$lzycompute(HiveExternalCatalog.scala:66) at org.apache.spark.sql.hive.HiveExternalCatalog.client(HiveExternalCatalog.scala:65)
at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply$mcZ$sp(HiveExternalCatalog.scala:195) at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:195) at org.apache.spark.sql.hive.HiveExternalCatalog$$anonfun$databaseExists$1.apply(HiveExternalCatalog.scala:195)
at org.apache.spark.sql.hive.HiveExternalCatalog.withClient(HiveExternalCatalog.scala:97) ... 28 more Caused by: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient at org.apache.hadoop.hive.metastore.MetaStoreUtils.newInstance(MetaStoreUtils.java:1523)
at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.
<init>(RetryingMetaStoreClient.java:86) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:132) at org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:104) at org.apache.hadoop.hive.ql.metadata.Hive.createMetaStoreClient(Hive.java:3005)
at org.apache.hadoop.hive.ql.metadata.Hive.getMSC(Hive.java:3024) at org.apache.hadoop.hive.ql.session.SessionState.start(SessionState.java:503) ... 43 more Caused by: java.lang.reflect.InvocationTargetException at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native
Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45) at java.lang.reflect.Constructor.newInstance(Constructor.java:423)
at org.apache.hadoop.hive.metastore.MetaStoreUtils.newInstance(MetaStoreUtils.java:1521) ... 49 more Caused by: java.lang.OutOfMemoryError: Java heap space During handling of the above exception, another exception occurred: AnalysisException Traceback
(most recent call last)
<ipython-input-12-9da3198f4ab3> in
<module>() 4 print( help(sparkSession.sql) )''' 5 ----> 6 sparkSession.sql('show databases').show() D:\Alanuccio\Progs\spark-2.3.0-bin-hadoop2.7\python\pyspark\sql\session.py in sql(self, sqlQuery) 706 [Row(f1=1, f2=u'row1'), Row(f1=2, f2=u'row2'),
Row(f1=3, f2=u'row3')] 707 """ --> 708 return DataFrame(self._jsparkSession.sql(sqlQuery), self._wrapped) 709 710 #since(2.0) D:\Alanuccio\Progs\spark-2.3.0-bin-hadoop2.7\python\lib\py4j-0.10.6-src.zip\py4j\java_gateway.py in __call__(self,
*args) 1158 answer = self.gateway_client.send_command(command) 1159 return_value = get_return_value( -> 1160 answer, self.gateway_client, self.target_id, self.name) 1161 1162 for temp_arg in temp_args: D:\Alanuccio\Progs\spark-2.3.0-bin-hadoop2.7\python\pyspark\sql\utils.py
in deco(*a, **kw) 67 e.java_exception.getStackTrace())) 68 if s.startswith('org.apache.spark.sql.AnalysisException: '): ---> 69 raise AnalysisException(s.split(': ', 1)[1], stackTrace) 70 if s.startswith('org.apache.spark.sql.catalyst.analysis'):
71 raise AnalysisException(s.split(': ', 1)[1], stackTrace) AnalysisException: 'java.lang.RuntimeException: java.lang.RuntimeException: Unable to instantiate org.apache.hadoop.hive.ql.metadata.SessionHiveMetaStoreClient;'
</details>
try this,
config("hive.metastore.uris","thrift://serv_ip:serv_port")
default port is 9083

Resources