Apache Spark DAGScheduler Flow of Data - apache-spark

I am trying to understand how exactly Apache Spark scheduler works. To do so, i've set a local cluster with one master and two workers. I only submit one application, which simply reads 4 files (2 small (~10MB) and 2 big(~1,1GB)),joins them and collects the result. In addition, i cache in memory the two small files.
I am running the standalone cluster mode with FIFO.I've understood how the stages are formed but i cannot figure out how the flow of data is determined(the arrows). When i look at SparkUI, i notice that each time,even though the stages are formed in the same way, the arrows( flow of data and control i guess) are different. It's like the scheduler works non-deterministically.
I've read the relative chapters (about DAG and Task Scheduler) from Jacek Laskowski's book, but it isn't still clear in my head how the flow of control is determined . Thanks in advance for the help.
Cheers,
Jim

It's like the scheduler works non-deterministically.
Yes, there's some randomness in scheduling tasks to make it more "fair". In that sense Spark scheduler does work "non-deterministically", but within acceptable limits of execution placement (i.e. assigning tasks with lesser location preferences to executors).
The component in Apache Spark that does the work of selecting a task for a task set (that corresponds to a stage) is TaskSetManager:
Schedules the tasks within a single TaskSet in the TaskSchedulerImpl. This class keeps track of each task, retries tasks if they fail (up to a limited number of times), and handles locality-aware scheduling for this TaskSet via delay scheduling. The main interfaces to it are resourceOffer, which asks the TaskSet whether it wants to run a task on one node, and statusUpdate, which tells it that one of its tasks changed state (e.g. finished).

Related

Netsuite Map Reduce yielding

I read in documentation that soft limits on governance cause map reduce scripts to yield and reschedule. My problem is I cannot see in docs where it explains what happens in the yield. Is the getInputData called again to regather the same data set ok to be mapped or is the initial data set persisted somewhere and already mapped and reduced records are Excluded from processing?
With yielding, the getInputData stage is not called again. From the docs;
If a job monopolizes a processor for too long, the system can
naturally finish the job after the current map or reduce function has
completed. In this case, the system creates a new job to continue
executing remaining key/value pairs. Based on its priority and
submission timestamp, the new job either starts right after the
original job has finished, or it starts later, to allow
higher-priority jobs processing other scripts to execute. For more
details, see SuiteScript 2.0 Map/Reduce Yielding.
This is different from server restarts or interruptions, however.

How to submit jobs across multiple partitions at the same time (Slurm)

After I submit a job to node/partition cn430 today, I find that the node is keeping obsessed,
After the previous job finished, my job still didn't get running due to priority. Then I noticed that all of these jobs have the same prefix, namely 4988443, which is ahead of my job id 4988560.
It seems that the user has submitted about 1000 jobs together with the same priority across multiple partitions,
I am wondering how to implement it.
Firstoff, cn430 really looks like a node rather than a partition. The partition to which it belongs seems to be named shared-gp.
What you see is a job array. It is a way to submit a large number of jobs that only differ in a specific parameter. Each job in the array is scheduled independently, so if you do not request a specific node (e.g. with -wor --nodelist), Slurm will broadcast them to the nodes that are available.
Note that the job priorities will decay overtime if faishare is being implemented so the jobs that are currently pending will have their priority decrease because of those currently running.

How to debug a slow PySpark application

There may be an obvious answer to this, but I couldn't find any after a lot of googling.
In a typical program, I'd normally add log messages to time different parts of the code and find out where the bottleneck is. With Spark/PySpark, however, transformations are evaluated lazily, which means most of the code is executed in almost constant time (not a function of the dataset's size at least) until an action is called at the end.
So how would one go about timing individual transformations and perhaps making some parts of the code more efficient by doing things differently where necessary and possible?
You can use Spark UI to see the execution plan of your jobs and time of each phase of them. Then you can optimize your operations using that statistics. Here is a very good presentation about monitoring Spark Apps using Spark UI https://youtu.be/mVP9sZ6K__Y (Spark Sumiit Europe 2016, by Jacek Laskowski)
Any job troubleshooting should have the below steps.
Step 1: Gather data about the issue
Step 2: Check the environment
Step 3: Examine the log files
Step 4: Check cluster and instance health
Step 5: Review configuration settings
Step 6: Examine input data
From the Hadoop Admin perspective, Spark long-running job basic troubleshooting. Go to RM > Application ID.
a) Check for AM & Non-AM Preempted. This can happen if more that required memory is assigned either to driver or executors which can get preempted for a high priority job/YARN queue.
b) Click on AppMaster url. Review Environment variables.
c) Check Jobs section, review Event timeline. Check if executors are getting started immediately after driver or taking time.
d) If Driver process is taking time, see if collect()/ collectAsList() is running on driver as these method tends to take time as they retrieve all the elements of the RDD/DataFrame/Dataset (from all nodes) to the driver node.
e) If no issue in event timeline, go to the incomplete task > stages and check Shuffle Read Size/Records for any Data Skewness issue.
f) If all tasks are complete and still Spark job is running, then go to Executor page > Driver process thread dump > Search for driver. And lookout for operation the driver is working on. Below will be NameNode operation method we can see there (if any).
*getFileInfo()
getFileList()
rename()
merge()
getblockLocation()
commit()*

Spark tasks stuck at RUNNING

I'm trying to run a Spark ML pipeline (load some data from JDBC, run some transformers, train a model) on my Yarn cluster but each time I run it, a couple - sometimes one, sometimes 3 or 4 - of my executors get stuck running their first task set (that'd be 3 tasks for each of their 3 cores), while the rest run normally, checking off 3 at a time.
In the UI, you'd see something like this:
Some things I have observed so far:
When I set up my executors to use 1 core each with spark.executor.cores (i.e. run 1 task at a time), the issue does not occur;
The stuck executors always seem to be them ones that had to get some partitions shuffled to them in order to run the task;
The stuck tasks would ultimately get successfully speculatively executed by another instance;
Occasionally, a single task would get stuck in an executor that is otherwise normal, the other 2 cores would keep working fine, however;
The stuck executor instances look like everything is normal: CPU is at ~100%, plenty of memory to spare, the JVM processes are alive, neither Spark or Yarn log anything out of the ordinary and they can still receive instructions from the driver, such as "drop this task, someone else speculatively executed it already" -- though, for some reason, they don't drop it;
Those executors never get killed off by the driver, so I imagine they keep sending their heartbeats just fine;
Any ideas as to what may be causing this or what I should try?
TLDR: Make sure your code is threadsafe and race condition-free before you blame Spark.
Figured it out. For posterity: was using an thread-unsafe data structure (a mutable HashMap). Since executors on the same machine share a JVM, this was resulting in data races that were locking up the separate threads/tasks.
The upshot: when you have spark.executor.cores > 1 (and you probably should), make sure your code is threadsafe.

Why does web UI show different durations in Jobs and Stages pages?

I am running a dummy spark job that does the exactly same set of operations in every iteration. The following figure shows 30 iterations, where each job corresponds to one iteration. It can be seen the duration is always around 70 ms except for job 0, 4, 16, and 28. The behavior of job 0 is expected as it is when the data is first loaded.
But when I click on job 16 to enter its detailed view, the duration is only 64 ms, which is similar to the other jobs, the screen shot of this duration is as follows:
I am wondering where does Spark spend the (2000 - 64) ms on job 16?
Gotcha! That's exactly the very same question I asked myself few days ago. I'm glad to share the findings with you (hoping that when I'm lucking understanding others chime in and fill the gaps).
The difference between what you can see in Jobs and Stages pages is the time required to schedule the stage for execution.
In Spark, a single job can have one or many stages with one or many tasks. That creates an execution plan.
By default, a Spark application runs in FIFO scheduling mode which is to execute one Spark job at a time regardless of how many cores are in use (you can check it in the web UI's Jobs page).
Quoting Scheduling Within an Application:
By default, Spark’s scheduler runs jobs in FIFO fashion. Each job is divided into "stages" (e.g. map and reduce phases), and the first job gets priority on all available resources while its stages have tasks to launch, then the second job gets priority, etc. If the jobs at the head of the queue don’t need to use the whole cluster, later jobs can start to run right away, but if the jobs at the head of the queue are large, then later jobs may be delayed significantly.
You should then see how many tasks a single job will execute and divide it by the number of cores the Spark application have assigned (you can check it in the web UI's Executors page).
That will give you the estimate on how many "cycles" you may need to wait before all tasks (and hence the jobs) complete.
NB: That's where dynamic allocation comes to the stage as you may sometimes want more cores later and start with a very few upfront. That's what the conclusion I offered to my client when we noticed a similar behaviour.
I can see that all the jobs in your example have 1 stage with 1 task (which make them very simple and highly unrealistic in production environment). That tells me that your machine could have got busier at different intervals and so the time Spark took to schedule a Spark job was longer but once scheduled the corresponding stage finished as the other stages from other jobs. I'd say it's a beauty of profiling that it may sometimes (often?) get very unpredictable and hard to reason about.
Just to shed more light on the internals of how web UI works. web UI uses a bunch of Spark listeners that collect current status of the running Spark application. There is at least one Spark listener per page in web UI. They intercept different execution times depending on their role.
Read about org.apache.spark.scheduler.SparkListener interface and review different callback to learn about the variety of events they can intercept.

Resources