How can I convert this first dataframe to the one below it? Based on different scenarios of the first three columns matching, I want to change the values in the rest of the columns.
import pandas as pd
df = pd.DataFrame([['foo', 'foo', 'bar', 'a', 'b', 'c', 'd'], ['bar', 'foo', 'bar', 'a', 'b', 'c', 'd'],
['spa', 'foo', 'bar', 'a', 'b', 'c', 'd']], columns=['col1', 'col2', 'col3', 's1', 's2', 's3', 's4'])
col1 col2 col3 s1 s2 s3 s4
0 foo foo bar a b c d
1 bar foo bar a b c d
2 spa foo bar a b c d
If col1 = col2, I want to change all a's to 2, all b's and c's to 1, and all d's to 0. This is row 1 in my example df.
If col1 = col3, I want to change all a's to 0, all b's and c's to 1, and all d's to 2. This is row 2 in my example df.
If col1 != col2/col3, I want to delete the row and add 1 to a counter so I have a total of deleted rows. This is row 3 in my example df.
So my final dataframe would look like this, with counter = 1:
df = pd.DataFrame([['foo', 'foo', 'bar', '2', '1', '1', '0'], ['bar', 'foo', 'bar', '0', '1', '1', '2']],
columns=['col1', 'col2', 'col3', 's1', 's2', 's3', 's4'])
col1 col2 col3 s1 s2 s3 s4
0 foo foo bar 2 1 1 0
1 bar foo bar 0 1 1 2
I was reading that using df.iterrows is slow and so there must be a way to do this on the whole df at once, but my original idea was:
for row in df.iterrows:
if (row["col1"] == row["col2"]):
df.replace(to_replace=['a'], value='2', inplace=True)
df.replace(to_replace=['b', 'c'], value='1', inplace=True)
df.replace(to_replace=['d'], value='0', inplace=True)
elif (row["col1"] == row["col3"]):
df.replace(to_replace=['a'], value='0', inplace=True)
df.replace(to_replace=['b', 'c'], value='1', inplace=True)
df.replace(to_replace=['d'], value='2', inplace=True)
else:
(delete row, add 1 to counter)
The original df is massive, so speed is important to me. I'm hoping it's possible to do the conversions on the whole dataframe without iterrows. Even if it's not possible, I could use help getting the syntax right for the iterrows.
You can remove rows by boolean indexing first:
m1 = df["col1"] == df["col2"]
m2 = df["col1"] == df["col3"]
m = m1 | m2
Get number of removed rows by sum of chained condition m1 and m2 with inverting by ~:
counter = (~m).sum()
print (counter)
1
df = df[m].copy()
print (df)
col1 col2 col3 s1 s2 s3 s4
0 foo foo bar a b c d
1 bar foo bar a b c d
and then replace with dictionary by condition:
d1 = {'a':2,'b':1,'c':1,'d':0}
d2 = {'a':0,'b':1,'c':1,'d':2}
m1 = df["col1"] == df["col2"]
#replace all columns without col1-col3
cols = df.columns.difference(['col1','col2','col3'])
df.loc[m1, cols] = df.loc[m1, cols].replace(d1)
df.loc[~m1, cols] = df.loc[~m1, cols].replace(d2)
print (df)
col1 col2 col3 s1 s2 s3 s4
0 foo foo bar 2 1 1 0
1 bar foo bar 0 1 1 2
Timings:
In [138]: %timeit (jez(df))
872 ms ± 6.94 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
In [139]: %timeit (hb(df))
1.33 s ± 9.7 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
Setup:
np.random.seed(456)
a = ['foo','bar', 'spa']
b = list('abcd')
N = 100000
df1 = pd.DataFrame(np.random.choice(a, size=(N, 3))).rename(columns=lambda x: 'col{}'.format(x+1))
df2 = pd.DataFrame(np.random.choice(b, size=(N, 20))).rename(columns=lambda x: 's{}'.format(x+1))
df = df1.join(df2)
#print (df.head())
def jez(df):
m1 = df["col1"] == df["col2"]
m2 = df["col1"] == df["col3"]
m = m1 | m2
counter = (~m).sum()
df = df[m].copy()
d1 = {'a':2,'b':1,'c':1,'d':0}
d2 = {'a':0,'b':1,'c':1,'d':2}
m1 = df["col1"] == df["col2"]
cols = df.columns.difference(['col1','col2','col3'])
df.loc[m1, cols] = df.loc[m1, cols].replace(d1)
df.loc[~m1, cols] = df.loc[~m1, cols].replace(d2)
return df
def hb(df):
counter = 0
df[df.col1 == df.col2] = df[df.col1 == df.col2].replace(['a', 'b', 'c', 'd'], [2,1,1,0])
df[df.col1 == df.col3] = df[df.col1 == df.col3].replace(['a', 'b', 'c', 'd'], [0,1,1,2])
index_drop =df[((df.col1 != df.col3) & (df.col1 != df.col2))].index
counter = counter + len(index_drop)
df = df.drop(index_drop)
return df
You can use:
import pandas as pd
df = pd.DataFrame([['foo', 'foo', 'bar', 'a', 'b', 'c', 'd'], ['bar', 'foo', 'bar', 'a', 'b', 'c', 'd'],
['spa', 'foo', 'bar', 'a', 'b', 'c', 'd']], columns=['col1', 'col2', 'col3', 's1', 's2', 's3', 's4'])
counter = 0
#
df[df.col1 == df.col2] = df[df.col1 == df.col2].replace(['a', 'b', 'c', 'd'], [2,1,1,0])
df[df.col1 == df.col3] = df[df.col1 == df.col3].replace(['a', 'b', 'c', 'd'], [0,1,1,2])
index_drop =df[((df.col1 != df.col3) & (df.col1 != df.col2))].index
counter = counter + len(index_drop)
df = df.drop(index_drop)
print(df)
print(counter)
Output:
col1 col2 col3 s1 s2 s3 s4
0 foo foo bar 2 1 1 0
1 bar foo bar 0 1 1 2
1 # counter
Related
I have a dataframe like
import pandas as pd
import numpy as np
df = pd.DataFrame({"Col1": ['A', np.nan, 'B', 'B', 'C'],
"Col2": ['A', 'B', 'B', 'A', 'C'],
"Col3": ['A', 'B', 'C', 'A', 'C']})
I want to get the unique combinations across columns for each row and create a new column with those values, excluding the missing values.
The code I have right now to do this is
def handle_missing(s):
return np.unique(s[s.notnull()])
def unique_across_rows(data):
unique_vals = data.apply(handle_missing, axis = 1)
# numpy unique sorts the values automatically
merged_vals = unique_vals.apply(lambda x: x[0] if len(x) == 1 else '_'.join(x))
return merged_vals
df['Combos'] = unique_across_rows(df)
This returns the expected output:
Col1 Col2 Col3 Combos
0 A A A A
1 NaN B B B
2 B B C B_C
3 B A A A_B
4 C C C C
It seems to me that there should be a more vectorized approach that exists within Pandas to do this: how could I do that?
You can try a simple list comprehension which might be more efficient for larger dataframes:
df['combos'] = ['_'.join(sorted(k for k in set(v) if pd.notnull(k))) for v in df.values]
Or you can wrap the above list comprehension in a more readable function:
def combos():
for v in df.values:
unique = set(filter(pd.notnull, v))
yield '_'.join(sorted(unique))
df['combos'] = list(combos())
Col1 Col2 Col3 combos
0 A A A A
1 NaN B B B
2 B B C B_C
3 B A A A_B
4 C C C C
You can also use agg/apply on axis=1 like below:
df['Combos'] = df.agg(lambda x: '_'.join(sorted(x.dropna().unique())),axis=1)
print(df)
Col1 Col2 Col3 Combos
0 A A A A
1 NaN B B B
2 B B C B_C
3 B A A A_B
4 C C C C
Try (explanation to follow)
df['Combos'] = (df.stack() # this removes NaN values
.sort_values() # so we have A_B instead of B_A in 3rd row
.groupby(level=0) # group by original index
.agg(lambda x: '_'.join(x.unique())) # join the unique values
)
Output:
Col1 Col2 Col3 Combos
0 A A A A
1 NaN B B B
2 B B C B_C
3 B A A A_B
4 C C C C
fill the nan with a string place-holder '-'. Create a unique array from the col1,col2,col3 list and remove the placeholder. join the unique array values with a '-'
import pandas as pd
import numpy as np
def unique(list1):
if '-' in list1:
list1.remove('-')
x = np.array(list1)
return (np.unique(x))
df = pd.DataFrame({"Col1": ['A', np.nan, 'B', 'B', 'C'],
"Col2": ['A', 'B', 'B', 'A', 'C'],
"Col3": ['A', 'B', 'C', 'A', 'C']}).fillna('-')
s="-"
for key,row in df.iterrows():
df.loc[key,'combos']=s.join(unique([row.Col1, row.Col2, row.Col3]))
print(df.head())
Need help in concatenating each row of a column with other column of a dataframe
Input:
Output
Use itertools.product in list comprehension:
from itertools import product
L = [''.join(x) for x in product(df['Col1'], df['Col2'])]
#alternative
L = [a + b for a, b in product(df['Col1'], df['Col2'])]
df = pd.DataFrame({'Col3':L})
print (df)
Col3
0 AE
1 AF
2 AG
3 BE
4 BF
5 BG
6 CE
7 CF
8 CG
Or cross join solution with helper column a:
df1 = df.assign(a=1)
df1 = df1.merge(df1, on='a')
df = (df1['Col1_x'] + df1['Col2_y']).to_frame('Col3')
Remark: it's easier to help if you copy the code for creating the input rather than images such as:
import pandas as pd
df=pd.DataFrame([['A', 'B', 'C', 'D'],['E', 'F', 'G', 'H']], columns=['col1', 'col2'])
Solution: least effort is the itertools library
from itertools import product
lst1 = ['A', 'B', 'C', 'D']
lst2 = ['E', 'F', 'G', 'H']
reslst = list(product(lst1, lst2))
or as dataframe series:
reslst = list(product(df['col1'].values, df['col2'].values))
print(reslst)
Note: as you know the result is a list which is n**2 long and hence can not be assigned to the original dataframe.
Based on 3 keys/columns uniqueid , uniqueid2 and uniqueid3 I need to generate a column new_key that will tag all associated products/rows with a single key.
```python
df = pd.DataFrame({'uniqueid': {0: 'a', 1: 'b', 2: 'b', 3: 'c',
4: 'd', 5: 'd', 6: 'e', 7: 'e',8:'g',9:'g',10:'h',11:'l',12:'m'},
'uniqueid2': {0: 'a', 1: 'b', 2: 'b', 3: 'c',
4: 'd', 5: 'd', 6: 'e', 7: 'e',8:'g',9:'g',10:'h',11:'l',12:'l'},
'uniqueid3': {0: 'z', 1: 'y', 2: 'x', 3: 'y',
4: 'x', 5: 'v', 6: 'x', 7: 'u',8:'h',9:'i',10:'k',11:'k',12:'n'}})
```
Data that I have based on columns uniqueid ,uniqueid2 and uniqueid3. I need to create new_key as already there. Here in this dummy data all the rows except first belong to a same product based on associations in column 1 and column2.
But I am unsure on how to proceed further. Quick help needed please
Expected Output:
[1]: https://i.stack.imgur.com/yAl56.png
This will give you the correct output, but I'm not sure this is exactly what you want to do in order to generate the new_key column. This solution checks uniqueid2 to see if all values are unique within each uniqueid group as well as the entire uniqueid2 column..
import pandas as pd
import numpy as np
df = pd.DataFrame({'uniqueid': {0: 'a', 1: 'b', 2: 'b', 3: 'c',
4: 'd', 5: 'd', 6: 'e', 7: 'e',8:'g',9:'g',10:'h',11:'l'},
'uniqueid2': {0: 'z', 1: 'y', 2: 'x', 3: 'y',
4: 'x', 5: 'v', 6: 'x', 7: 'u',8:'h',9:'i',10:'k',11:'k'}})
df['m1'] = (df.groupby('uniqueid2')['uniqueid2'].transform('count') == 1)
df['m2'] = (df.groupby('uniqueid')['m1'].transform(sum))
df['m3'] = (df.groupby('uniqueid')['uniqueid2'].transform('size'))
df['m4'] = (df.groupby('uniqueid')['uniqueid'].transform('count') == 1)
df['new_key'] = np.where((df['m2'] == df['m3']) | df['m4'], df['uniqueid'], 'b')
df
Out[13]:
uniqueid uniqueid2 m1 m2 m3 m4 new_key
0 a z True 1.0 1 True a
1 b y False 0.0 2 False b
2 b x False 0.0 2 False b
3 c y False 0.0 1 True c
4 d x False 1.0 2 False b
5 d v True 1.0 2 False b
6 e x False 1.0 2 False b
7 e u True 1.0 2 False b
8 g h True 2.0 2 False g
9 g i True 2.0 2 False g
10 h k False 0.0 1 True h
11 l k False 0.0 1 True l
I kept m1, m2 and m3, so that you could see the progression of the logic. You can drop these columns with:
df = df.drop(['m1','m2','m3'], axis=1)
This looks like a networkx problem, lets try:
import networkx as nx
G = nx.Graph()
#get first value of uniqueid based on uniqueid2
s = df.groupby('uniqueid2')['uniqueid'].transform('first')
#get connected components from unique id and the above variable s
G.add_edges_from(df[['uniqueid']].assign(k=s).to_numpy().tolist())
cc = list(nx.connected_components(G))
#[{'a'}, {'b', 'c', 'd', 'e'}, {'g'}, {'h', 'l'}]
idx = [dict.fromkeys(y,x) for x, y in enumerate(cc)]
d={k: v for d in idx for k, v in d.items()}
df['new_key'] = s.groupby(s.map(d)).transform('first')
print(df)
uniqueid uniqueid2 new_key
0 a z a
1 b y b
2 b x b
3 c y b
4 d x b
5 d v b
6 e x b
7 e u b
8 g h g
9 g i g
10 h k h
11 l k h
I have a dataframe like this:
d = {'col1': ['a', 'b'], 'col2': [2, 4]}
df = pd.DataFrame(data=d)
df
>> col1 col2
0 a 2
1 b 4
and i want to duplicate the rows by col2 and get a table like this:
>> col1 col2
0 a 2
1 a 2
2 b 4
3 b 4
4 b 4
5 b 4
Thanks to everyone for the help!
Here's my solution using some numpy:
numRows = np.sum(df.col2)
blankSpace = np.zeros(numRows,).astype(str)
d2 = {'col1': blankSpace, 'col2': blankSpace}
df2 = pd.DataFrame(data=d2)
counter = 0
for i in range(df.shape[0]):
letter = df.col1[i]
numRowsForLetter = df.col2[i]
for j in range(numRowsForLetter):
df2.at[counter, 'col1'] = letter
df2.at[counter, 'col2'] = numRowsForLetter
counter += 1
df2 is your output dataframe!
Here is my example dataframe row:
A B C D E
I have a dictionary formatted like:
{'foo': ['A', 'B', 'C'], 'bar': ['D', 'E']}
I would like to add a row above my original dataframe so my new dataframe is:
foo foo foo bar bar
A B C D E
I think maybe the df.map function should be able to do it, but I've tried it and can't seem to get the syntax right.
I believe you want set columns names by row of DataFrame with dict and map:
d = {'foo': ['A', 'B', 'C'], 'bar': ['D', 'E']}
#swap keys with values
d1 = {k: oldk for oldk, oldv in d.items() for k in oldv}
print (d1)
{'E': 'bar', 'A': 'foo', 'D': 'bar', 'B': 'foo', 'C': 'foo'}
df = pd.DataFrame([list('ABCDE')])
df.columns = df.iloc[0].map(d1).values
print (df)
foo foo foo bar bar
0 A B C D E
If need set first row in one row DataFrame:
df = pd.DataFrame([list('ABCDE')])
df.loc[-1] = df.iloc[0].map(d1)
df = df.sort_index().reset_index(drop=True)
print (df)
0 1 2 3 4
0 foo foo foo bar bar
1 A B C D E