How to add column name to cell in pandas dataframe? - python-3.x

How do I take a normal data frame, like the following:
d = {'col1': [1, 2], 'col2': [3, 4]}
df = pd.DataFrame(data=d)
df
col1 col2
0 1 3
1 2 4
and produce a dataframe where the column name is added to the cell in the frame, like the following:
d = {'col1': ['col1=1', 'col1=2'], 'col2': ['col2=3', 'col2=4']}
df = pd.DataFrame(data=d)
df
col1 col2
0 col1=1 col2=3
1 col1=2 col2=4
Any help is appreciated.

Make a new DataFrame containing the col*= strings, then add it to the original df with its values converted to strings. You get the desired result because addition concatenates strings:
>>> pd.DataFrame({col:str(col)+'=' for col in df}, index=df.index) + df.astype(str)
col1 col2
0 col1=1 col2=3
1 col1=2 col2=4

You can use apply to set column name in cells and then join them with '=' and the values.
df.apply(lambda x: x.index+'=', axis=1)+df.astype(str)
Out[168]:
col1 col2
0 col1=1 col2=3
1 col1=2 col2=4

You can try this
df.ne(0).mul(df.columns)+'='+df.astype(str)
Out[1118]:
col1 col2
0 col1=1 col2=3
1 col1=2 col2=4

Related

sort values a data frame with duplicates values

I have a dataframe with a format like this:
d = {'col1': ['PC', 'PO', 'PC', 'XY', 'XY', 'AB', 'AB', 'PC', 'PO'], 'col2':
[1,2,3,4,5,6,7,8,9]}
df = pd.DataFrame(data=d)
df.sort_values(by = 'col1')
This gives me the result like this:
I want to sort the values based on col1 values with desired order, keep the duplicates. The result I expect would be like this:
Any idea?
Thanks in advance!
You can create an order beforehand and then sort values as below.
order = ['PO','XY','AB','PC']
df['col1'] = pd.CategoricalIndex(df['col1'], ordered=True, categories=order)
df = df.sort_values(by = 'col1')
df
col1 col2
1 PO 2
8 PO 9
3 XY 4
4 XY 5
5 AB 6
6 AB 7
0 PC 1
2 PC 3
7 PC 8

pd dataframe from lists and dictionary using series

I have few lists and a dictionary and would like to create a pd dataframe.
Could someone help me out, I seem to be missing something:
one simple example bellow:
dict={"a": 1, "b": 3, "c": "text1"}
l1 = [1, 2, 3, 4]
l3 = ["x", "y"]
Using series I would do like this:
df = pd.DataFrame({'col1': pd.Series(l1), 'col2': pd.Series(l3)})
and would have the lists within the df as expected
for dict would do
df = pd.DataFrame(list(dic.items()), columns=['col3', 'col4'])
And would expect this result:
col1 col2 col3 col4
1 x a 1
2 y b 3
3 c text1
4
The problem is like this the first df would be overwritten by the second call of pd.Dataframe
How would I do this to have only one df with 4 columns?
I know one way would be to split the dict in 2 separate lists and just use Series over 4 lists, but I would think there is a better way to do this, out of 2 lists and 1 dict as above to have directly one df with 4 columns.
thanks for the help
you can also use pd.concat to concat two dataframe.
df1 = pd.DataFrame({'col1': pd.Series(l1), 'col2': pd.Series(l3)})
df2 = pd.DataFrame(list(dic.items()), columns=['col3', 'col4'])
df = pd.concat([df1, df2], axis=1)
Why not build each column seperately via dict.keys() and dict.values() instead of using dict.items()
df = pd.DataFrame({
'col1': pd.Series(l1),
'col2': pd.Series(l3),
'col3': pd.Series(dict.keys()),
'col4': pd.Series(dict.values())
})
print(df)
col1 col2 col3 col4
0 1 x a 1
1 2 y b 3
2 3 NaN c text1
3 4 NaN NaN NaN
Alternatively:
column_values = [l1, l3, dict.keys(), dict.values()]
data = {f"col{i}": pd.Series(values) for i, values in enumerate(column_values)}
df = pd.DataFrame(data)
print(df)
col0 col1 col2 col3
0 1 x a 1
1 2 y b 3
2 3 NaN c text1
3 4 NaN NaN NaN
You can unpack zipped values of list generated from d.items() and pass to itertools.zip_longest for add missing values for match by maximum length of list:
#dict is python code word, so used d for variable
d={"a": 1, "b": 3, "c": "text1"}
l1 = [1, 2, 3, 4]
l3 = ["x", "y"]
df = pd.DataFrame(zip_longest(l1, l3, *zip(*d.items()),
fillvalue=np.nan),
columns=['col1','col2','col3','col4'])
print (df)
col1 col2 col3 col4
0 1 x a 1
1 2 y b 3
2 3 NaN c text1
3 4 NaN NaN NaN

Duplicate rows in a dataframe according to a criterion from the table

I have a dataframe like this:
d = {'col1': ['a', 'b'], 'col2': [2, 4]}
df = pd.DataFrame(data=d)
df
>> col1 col2
0 a 2
1 b 4
and i want to duplicate the rows by col2 and get a table like this:
>> col1 col2
0 a 2
1 a 2
2 b 4
3 b 4
4 b 4
5 b 4
Thanks to everyone for the help!
Here's my solution using some numpy:
numRows = np.sum(df.col2)
blankSpace = np.zeros(numRows,).astype(str)
d2 = {'col1': blankSpace, 'col2': blankSpace}
df2 = pd.DataFrame(data=d2)
counter = 0
for i in range(df.shape[0]):
letter = df.col1[i]
numRowsForLetter = df.col2[i]
for j in range(numRowsForLetter):
df2.at[counter, 'col1'] = letter
df2.at[counter, 'col2'] = numRowsForLetter
counter += 1
df2 is your output dataframe!

Pandas Use Value if Not Null, Else Use Value From Next Column

Given the following dataframe:
import pandas as pd
df = pd.DataFrame({'COL1': ['A', np.nan,'A'],
'COL2' : [np.nan,'A','A']})
df
COL1 COL2
0 A NaN
1 NaN A
2 A A
I would like to create a column ('COL3') that uses the value from COL1 per row unless that value is null (or NaN). If the value is null (or NaN), I'd like for it to use the value from COL2.
The desired result is:
COL1 COL2 COL3
0 A NaN A
1 NaN A A
2 A A A
Thanks in advance!
In [8]: df
Out[8]:
COL1 COL2
0 A NaN
1 NaN B
2 A B
In [9]: df["COL3"] = df["COL1"].fillna(df["COL2"])
In [10]: df
Out[10]:
COL1 COL2 COL3
0 A NaN A
1 NaN B B
2 A B A
You can use np.where to conditionally set column values.
df = df.assign(COL3=np.where(df.COL1.isnull(), df.COL2, df.COL1))
>>> df
COL1 COL2 COL3
0 A NaN A
1 NaN A A
2 A A A
If you don't mind mutating the values in COL2, you can update them directly to get your desired result.
df = pd.DataFrame({'COL1': ['A', np.nan,'A'],
'COL2' : [np.nan,'B','B']})
>>> df
COL1 COL2
0 A NaN
1 NaN B
2 A B
df.COL2.update(df.COL1)
>>> df
COL1 COL2
0 A A
1 NaN B
2 A A
Using .combine_first, which gives precedence to non-null values in the Series or DataFrame calling it:
import pandas as pd
import numpy as np
df = pd.DataFrame({'COL1': ['A', np.nan,'A'],
'COL2' : [np.nan,'B','B']})
df['COL3'] = df.COL1.combine_first(df.COL2)
Output:
COL1 COL2 COL3
0 A NaN A
1 NaN B B
2 A B A
If we mod your df slightly then you will see that this works and in fact will work for any number of columns so long as there is a single valid value:
In [5]:
df = pd.DataFrame({'COL1': ['B', np.nan,'B'],
'COL2' : [np.nan,'A','A']})
df
Out[5]:
COL1 COL2
0 B NaN
1 NaN A
2 B A
In [6]:
df.apply(lambda x: x[x.first_valid_index()], axis=1)
Out[6]:
0 B
1 A
2 B
dtype: object
first_valid_index will return the index value (in this case column) that contains the first non-NaN value:
In [7]:
df.apply(lambda x: x.first_valid_index(), axis=1)
Out[7]:
0 COL1
1 COL2
2 COL1
dtype: object
So we can use this to index into the series
You can also use mask which replaces the values where COL1 is NaN by column COL2:
In [8]: df.assign(COL3=df['COL1'].mask(df['COL1'].isna(), df['COL2']))
Out[8]:
COL1 COL2 COL3
0 A NaN A
1 NaN A A
2 A A A

Pandas add empty rows as filler

Given the following data frame:
import pandas as pd
DF = pd.DataFrame({'COL1': ['A', 'A','B'],
'COL2' : [1,2,1],
'COL3' : ['X','Y','X']})
DF
COL1 COL2 COL3
0 A 1 X
1 A 2 Y
2 B 1 X
I would like to have an additional row for COL1 = 'B' so that both values (COL1 A and B) are represented by the COL3 values X and Y, with a 0 for COL2 in the generated row.
The desired result is as follows:
COL1 COL2 COL3
0 A 1 X
1 A 2 Y
2 B 1 X
3 B 0 Y
This is just a simplified example, but I need a calculation that could handle many such instances (and not just inserting the row in interest manually).
Thanks in advance!
UPDATE:
For a generalized scenario where there are many different combinations of values under 'COL1' and 'COL3', this works but is probably not nearly as efficient as it can be:
#Get unique set of COL3
COL3SET = set(DF['COL3'])
#Get unique set of COL1
COL1SET = set(DF['COL1'])
#Get all possible combinations of unique sets
import itertools
COMB=[]
for combination in itertools.product(COL1SET, COL3SET):
COMB.append(combination)
#Create dataframe from new set:
UNQ = pd.DataFrame({'COMB':COMB})
#Split tuples into columns
new_col_list = ['COL1unq','COL3unq']
for n,col in enumerate(new_col_list):
UNQ[col] = UNQ['COMB'].apply(lambda COMB: COMB[n])
UNQ = UNQ.drop('COMB',axis=1)
#Merge original data frame with unique set data frame
DF = pd.merge(DF,UNQ,left_on=['COL1','COL3'],right_on=['COL1unq','COL3unq'],how='outer')
#Fill in empty values of COL1 and COL3 where they did not have records
DF['COL1'] = DF['COL1unq']
DF['COL3'] = DF['COL3unq']
#Replace 'NaN's in column 2 with zeros
DF['COL2'].fillna(0, inplace=True)
#Get rid of COL1unq and COL3unq
DF.drop(['COL1unq','COL3unq'],axis=1, inplace=True)
DF
Something like this?
col1_b_vals = set(DF.loc[DF.COL1 == 'B', 'COL3'])
col1_not_b_col3_vals = set(DF.loc[DF.COL1 != 'B', 'COL3'])
missing_vals = col1_not_b_col3_vals.difference(col1_b_vals)
missing_rows = DF.loc[(DF.COL1 != 'B') & (DF.COL3.isin(missing_vals)), :]
missing_rows['COL1'] = 'B'
missing_rows['COL2'] = 0
>>> pd.concat([DF, missing_rows], ignore_index=True)
COL1 COL2 COL3
0 A 1 X
1 A 2 Y
2 B 1 X
3 B 0 Y

Resources