Could not read data from kafka using pyspark - apache-spark

I've a streaming data in my kafka topic. I need to read this data from topic using pyspark inthe form of pyspark dataframe. But I'm continuously receiving error when I'm calling readStream function. The error is "py4j.protocol.Py4JJavaError: An error occurred while calling o35.load". My code is as follows:-
os.environ['PYSPARK_SUBMIT_ARGS'] = '--packages org.apache.spark:spark-streaming-kafka-0-8_2.11:2.0.2 pyspark-shell'
if __name__ == '__main__':
sc = SparkSession.builder.appName('PythonStreamingDirectKafkaWordCount').getOrCreate()
ssc = StreamingContext(sc, 60)
df = sc \
.readStream \
.format("kafka") \
.option("kafka.bootstrap.servers", "localhost:9092") \
.option("subscribe", "near_line") \
.load() \
.selectExpr("CAST(key AS STRING)", "CAST(value AS STRING)","CAST(value AS STRING)")
ssc.start()
ssc.awaitTermination()
I'm getting an error as follows:-
Traceback (most recent call last):
File "/home/nayanam/PycharmProjects/recommendation_engine/derivation/kafka_cons**umer_test.py", line 21, in <module>
.option("subscribe", "near_line") \**
File "/home/nayanam/anaconda3/lib/python3.5/site-packages/pyspark/sql/streaming.py", line 397, in load
return self._df(self._jreader.load())
File "/home/nayanam/anaconda3/lib/python3.5/site-packages/py4j/java_gateway.py", line 1133, in __call__
answer, self.gateway_client, self.target_id, self.name)
File "/home/nayanam/anaconda3/lib/python3.5/site-packages/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/home/nayanam/anaconda3/lib/python3.5/site-packages/py4j/protocol.py", line 319, in get_return_value
format(target_id, ".", name), value)
py4j.protocol.Py4JJavaError: An error occurred while calling o35.load.
: java.lang.ClassNotFoundException: Failed to find data source: kafka. Please find packages at http://spark.apache.org/third-party-projects.html
at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:549)
at org.apache.spark.sql.execution.datasources.DataSource.providingClass$lzycompute(DataSource.scala:86)
at org.apache.spark.sql.execution.datasources.DataSource.providingClass(DataSource.scala:86)
at org.apache.spark.sql.execution.datasources.DataSource.sourceSchema(DataSource.scala:195)
at org.apache.spark.sql.execution.datasources.DataSource.sourceInfo$lzycompute(DataSource.scala:87)
at org.apache.spark.sql.execution.datasources.DataSource.sourceInfo(DataSource.scala:87)
at org.apache.spark.sql.execution.streaming.StreamingRelation$.apply(StreamingRelation.scala:30)
at org.apache.spark.sql.streaming.DataStreamReader.load(DataStreamReader.scala:150)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Caused by: java.lang.ClassNotFoundException: kafka.DefaultSource
at java.net.URLClassLoader.findClass(URLClassLoader.java:381)
at java.lang.ClassLoader.loadClass(ClassLoader.java:424)
at java.lang.ClassLoader.loadClass(ClassLoader.java:357)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21$$anonfun$apply$12.apply(DataSource.scala:533)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21$$anonfun$apply$12.apply(DataSource.scala:533)
at scala.util.Try$.apply(Try.scala:192)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21.apply(DataSource.scala:533)
at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$21.apply(DataSource.scala:533)
at scala.util.Try.orElse(Try.scala:84)
at org.apache.spark.sql.execution.datasources.DataSource$.lookupDataSource(DataSource.scala:533)
... 18 more

I got the same issue. Well, in spark 2.3 pyspark accepts the --jars options and it's working. So, in this version, all you need are 2 jars:
spark-sql-kafka-0-10_2.11-2.3.2.jar
spark-streaming-kafka-0-10-assembly_2.11-2.3.2.jar
$ pyspark --jars spark-sql-kafka-0-10_2.11-2.3.2.jar,spark-streaming-kafka-0-10-assembly_2.11-2.3.2.jar
I'm using Spark 2.3.0, Scala 2.11.8 and Kafka 0.10 which are downloadable from apache.org

pass this package if you don't want to use jar
--packages org.apache.spark:spark-sql-kafka-0-10_2.11:2.3.2,org.apache.spark:spark-streaming-kafka-0-10-assembly_2.11:2.3.2

Related

pyspark read data from hbase

hadoop: 3.2.1
hbase: 2.3.4
spark: 2.4.7
python: 3.7.6
Hbase table: "tmp"
hbase(main):001:0> scan "tmp"
ROW COLUMN+CELL
1 column=cols:age, timestamp=2021-06-22T14:17:31.735, value=10
1 column=cols:name, timestamp=2021-06-22T14:17:23.037, value=tom
2 column=cols:age, timestamp=2021-06-22T14:17:40.157, value=11
2 column=cols:name, timestamp=2021-06-22T14:17:48.516, value=dim
spark shell:
pyspark \
--master yarn \
--deploy-mode client \
--num-executors 5 \
--executor-cores 1 \
--driver-memory 6g \
--executor-memory 1g \
--packages org.apache.hbase.connectors.spark:hbase-spark:1.0.0
spark code:
from pyspark.sql import SparkSession
spark = SparkSession.builder.getOrCreate()
df = (spark.read.format("org.apache.hadoop.hbase.spark")
.option("hbase.table", "tmp")
.option("hbase.columns.mapping", "col1 STRING :key, col2 STRING cols:name, col3 STRING cols:age")
.load())
df.show()
I run pyspark code in pyspark shell.
but I get an error.
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/usr/lib/spark-current/python/pyspark/sql/readwriter.py", line 172, in load
return self._df(self._jreader.load())
File "/usr/lib/spark-current/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
File "/usr/lib/spark-current/python/pyspark/sql/utils.py", line 67, in deco
return f(*a, **kw)
File "/usr/lib/spark-current/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o169.load.
: java.lang.NullPointerException
at org.apache.hadoop.hbase.spark.HBaseRelation.<init>(DefaultSource.scala:138)
at org.apache.hadoop.hbase.spark.DefaultSource.createRelation(DefaultSource.scala:69)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:365)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:242)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:230)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:186)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)

How to connect Spark Streaming with Kafka

from pyspark import SparkContext
from pyspark.streaming import StreamingContext
from pyspark.streaming.kafka import KafkaUtils
sc = SparkContext.getOrCreate()
ssc = StreamingContext(sc, 1)
directKafkaStream = KafkaUtils.createDirectStream(ssc, ["topic"], {"metadata.broker.list":"prd-kafka:9092,prd-kafka1:9092,prd-kafka:9092,"})
I trying to no connect spark streaming with, to read some topic and write in hdfs.
But there is a problem, follow bellow
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/opt/cloudera/parcels/CDH-5.9.3-1.cdh5.9.3.p0.4/lib/spark/python/pyspark/streaming/kafka.py", line 152, in createDirectStream
raise e
py4j.protocol.Py4JJavaError: An error occurred while calling o73.createDirectStreamWithoutMessageHandler.
: org.apache.spark.SparkException: java.io.EOFException
java.nio.channels.ClosedChannelException
java.io.EOFException
at org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$checkErrors$1.apply(KafkaCluster.scala:366)
at org.apache.spark.streaming.kafka.KafkaCluster$$anonfun$checkErrors$1.apply(KafkaCluster.scala:366)
at scala.util.Either.fold(Either.scala:97)
at org.apache.spark.streaming.kafka.KafkaCluster$.checkErrors(KafkaCluster.scala:365)
at org.apache.spark.streaming.kafka.KafkaUtils$.getFromOffsets(KafkaUtils.scala:222)
at org.apache.spark.streaming.kafka.KafkaUtilsPythonHelper.createDirectStream(KafkaUtils.scala:720)
at org.apache.spark.streaming.kafka.KafkaUtilsPythonHelper.createDirectStreamWithoutMessageHandler(KafkaUtils.scala:688)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:231)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:381)
at py4j.Gateway.invoke(Gateway.java:259)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:133)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:209)
at java.lang.Thread.run(Thread.java:748)
I think my connection must be similar that
format("kafka") \
.option("kafka.sasl.mechanism", "SCRAM-SHA-256") \
.option("kafka.security.protocol", "SASL_PLAINTEXT") \
.option("kafka.sasl.jaas.config", EH_SASL) \
.option("kafka.batch.size", 5000) \
.option("kafka.bootstrap.servers", "metadata.broker.list":"prd-kafka:9092,prd-kafka1:9092,prdkafka:9092,") \
.option("subscribe", "topic")
Somebody knows how to connect spark streaming with kafka using "SCHA-SHA-256" mechanism.

Logon denied error when loading data from Oracle to pyspark

Please note that I am new to pySpark, and feel free to let me know if I am missing any detail.
Running on Windows 10, with python3.7 installed
Command being used to run pyspark: pyspark --jars "C:\spark\spark-2.4.5-bin-hadoop2.7\jars\ojdbc6.jar"
Code that I am trying to execute in pyspark shell:
from pyspark import SparkConf, SparkContext
sqlctx = SQLContext(sc)
with open("new1", "r") as f:
query = f.read()
df = sqlctx.read.format("jdbc").options(url="jdbc:oracle:thin:#host:port:sid",
driver="oracle.jdbc.driver.OracleDriver", dbtable=query).load()
I am pretty sure, url is correct, window login that i'm using has access to database as it works fine with cx_Oracle and I can access DB using PL/SQL client.
Error:
File "<stdin>", line 1, in <module>
File "C:\spark\spark-2.4.5-bin-hadoop2.7\python\pyspark\sql\readwriter.py", line 172, in load
return self._df(self._jreader.load())
File "C:\spark\spark-2.4.5-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\java_gateway.py", line 1257, in __call__
File "C:\spark\spark-2.4.5-bin-hadoop2.7\python\pyspark\sql\utils.py", line 63, in deco
return f(*a, **kw)
File "C:\spark\spark-2.4.5-bin-hadoop2.7\python\lib\py4j-0.10.7-src.zip\py4j\protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o39.load.
: java.sql.SQLException: ORA-01017: invalid username/password; logon denied
at oracle.jdbc.driver.T4CTTIoer.processError(T4CTTIoer.java:447)
at oracle.jdbc.driver.T4CTTIoer.processError(T4CTTIoer.java:389)
at oracle.jdbc.driver.T4CTTIoer.processError(T4CTTIoer.java:382)
at oracle.jdbc.driver.T4CTTIfun.processError(T4CTTIfun.java:675)
at oracle.jdbc.driver.T4CTTIoauthenticate.processError(T4CTTIoauthenticate.java:448)
at oracle.jdbc.driver.T4CTTIfun.receive(T4CTTIfun.java:513)
at oracle.jdbc.driver.T4CTTIfun.doRPC(T4CTTIfun.java:227)
at oracle.jdbc.driver.T4CTTIoauthenticate.doOAUTH(T4CTTIoauthenticate.java:383)
at oracle.jdbc.driver.T4CTTIoauthenticate.doOAUTH(T4CTTIoauthenticate.java:776)
at oracle.jdbc.driver.T4CConnection.logon(T4CConnection.java:432)
at oracle.jdbc.driver.PhysicalConnection.<init>(PhysicalConnection.java:553)
at oracle.jdbc.driver.T4CConnection.<init>(T4CConnection.java:254)
at oracle.jdbc.driver.T4CDriverExtension.getConnection(T4CDriverExtension.java:32)
at oracle.jdbc.driver.OracleDriver.connect(OracleDriver.java:528)
at org.apache.spark.sql.execution.datasources.jdbc.DriverWrapper.connect(DriverWrapper.scala:45)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$createConnectionFactory$1.apply(JdbcUtils.scala:63)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcUtils$$anonfun$createConnectionFactory$1.apply(JdbcUtils.scala:54)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCRDD$.resolveTable(JDBCRDD.scala:56)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCRelation$.getSchema(JDBCRelation.scala:210)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:35)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:318)
at org.apache.spark.sql.DataFrameReader.loadV1Source(DataFrameReader.scala:223)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:211)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:167)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Unknown Source)
this is the example way to access oracle from spark, where you are using user and pwd seperately.
see read-data-from-oracle-database-with-apache-spark
myDF = spark.read \
.format("jdbc") \
.option("url", "jdbc:oracle:thin:username/password#//hostname:portnumber/SID") \
.option("dbtable", "hr.emp") \
.option("user", "db_user_name") \
.option("password", "password") \
.option("driver", "oracle.jdbc.driver.OracleDriver") \
.load()

pyspark MQTT structured streaming with apache bahir

I'm using spark 2.4 and I've run pyspark like this:
./bin/pyspark --packages org.apache.bahir:spark-sql-streaming-mqtt_2.11:2.3.2
pyspark runs successfully.
(But when I run spark-sql-streaming-mqtt_2.11:2.4.0-SNAPSHOT, got an error)
I'm trying to get data from a MQTT broker using structured streaming.
so, I've run this
>>> from pyspark.sql import SparkSession
>>> from pyspark.sql.functions import explode
>>> from pyspark.sql.functions import split
>>> spark = SparkSession \
... .builder \
... .appName("Test") \
... .getOrCreate()
>>> lines = spark.readStream\
... .format("org.apache.bahir.sql.streaming.mqtt.MQTTStreamSourceProvider")\
... .option("topic", "/sensor")\
... .option("brokerUrl", "tcp://localhost:1883")\
... .load()
the error shown:
2019-03-22 01:24:43 WARN MQTTUtils:51 - If `clientId` is not set, a random value is picked up.
Recovering from failure is not supported in such a case.
Traceback (most recent call last):
File "<stdin>", line 4, in <module>
File "/opt/spark/python/pyspark/sql/streaming.py", line 400, in load
return self._df(self._jreader.load())
File "/opt/spark/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py", line 1257, in __call__
File "/opt/spark/python/pyspark/sql/utils.py", line 63, in deco
return f(*a, **kw)
File "/opt/spark/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py", line 328, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o43.load.
: MqttException (0)
at org.eclipse.paho.client.mqttv3.persist.MqttDefaultFilePersistence.checkIsOpen(MqttDefaultFilePersistence.java:130)
at org.eclipse.paho.client.mqttv3.persist.MqttDefaultFilePersistence.getFiles(MqttDefaultFilePersistence.java:247)
at org.eclipse.paho.client.mqttv3.persist.MqttDefaultFilePersistence.close(MqttDefaultFilePersistence.java:142)
at org.apache.bahir.sql.streaming.mqtt.MQTTStreamSource.stop(MQTTStreamSource.scala:228)
at org.apache.spark.sql.streaming.DataStreamReader.load(DataStreamReader.scala:190)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:282)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:238)
at java.lang.Thread.run(Thread.java:748)
I tried to stream MQTT data for a week. But I don't think there is a way to solve it and it is really desperate. Is there no way I can solve it?
Thank you.
Try to set the persistence option.
Example :
val lines = spark.readStream.format("datasource.mqtt.MQTTStreamSourceProvider")
.option("topic", topic)
.option("persistence","memory")
.option("brokerUrl",broker)
.option("cleanSession", "true")
.load()

pyspark to read data from sql server

I'm trying to read data from sql server using pyspark. Below mentioned code works fine when executed using following command (where i'm passing sqljdbc driver path) but it fails when i try to run it using PyCharm IDE(on windows).
spark-submit --driver-class-path C:\drivers\sqljdbc_6.0.8112.100_enu\sqljdbc_6.0\enu\jre8\sqljdbc42.jar ReadSQLServerData.py
How to include or set the driver path while running same code through PyCharm IDE?
Code:
from pyspark.sql import SQLContext, Row
from pyspark import SparkConf, SparkContext
conf = SparkConf().setAppName("ReadSQLServerData")
sc = SparkContext(conf=conf)
query = "(SELECT top 10 * from users) as users"
sqlctx = SQLContext(sc)
df = sqlctx.read.format("jdbc").options(url="jdbc:sqlserver://mssqlserver:1433;database=user_management;user=pyspark;password=pyspark", dbtable=query).load()
Exception:
Traceback (most recent call last):
File "H:/Mine/OneDrive/Python/PySpark01/ReadSQLServerData.py", line 9, in <module>
df = sqlctx.read.format("jdbc").options(url="jdbc:sqlserver://mssqlserver:1433;database=user_management;user=pyspark;password=pyspark", dbtable=query).load()
File "C:\spark\python\pyspark\sql\readwriter.py", line 155, in load
return self._df(self._jreader.load())
File "C:\spark\python\lib\py4j-0.10.4-src.zip\py4j\java_gateway.py", line 1133, in __call__
File "C:\spark\python\pyspark\sql\utils.py", line 63, in deco
return f(*a, **kw)
File "C:\spark\python\lib\py4j-0.10.4-src.zip\py4j\protocol.py", line 319, in get_return_value
py4j.protocol.Py4JJavaError: An error occurred while calling o27.load.
: java.sql.SQLException: No suitable driver
at java.sql.DriverManager.getDriver(DriverManager.java:315)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions$$anonfun$7.apply(JDBCOptions.scala:84)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions$$anonfun$7.apply(JDBCOptions.scala:84)
at scala.Option.getOrElse(Option.scala:121)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.<init>(JDBCOptions.scala:83)
at org.apache.spark.sql.execution.datasources.jdbc.JDBCOptions.<init>(JDBCOptions.scala:34)
at org.apache.spark.sql.execution.datasources.jdbc.JdbcRelationProvider.createRelation(JdbcRelationProvider.scala:32)
at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:330)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:152)
at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:125)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:498)
at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
at py4j.Gateway.invoke(Gateway.java:280)
at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
at py4j.commands.CallCommand.execute(CallCommand.java:79)
at py4j.GatewayConnection.run(GatewayConnection.java:214)
at java.lang.Thread.run(Thread.java:748)
Not sure if you figured this out but figured I could help others.
You have to set the driver-class-path and you can pass it in as a config option like below
spark = SparkSession \
.builder \
.appName("Python Spark SQL basic example") \
.config("spark.driver.extraClassPath","/Users/Desktop/drivers/sqljdbc42.jar") \
.getOrCreate()

Resources