Doc2Vec.infer_vector keeps giving different result everytime on a particular trained model - nlp

I am trying to follow the official Doc2Vec Gensim tutorial mentioned here - https://github.com/RaRe-Technologies/gensim/blob/develop/docs/notebooks/doc2vec-lee.ipynb
I modified the code in line 10 to determine best matching document for the given query and everytime I run, I get a completely different resultset. My new code iin line 10 of the notebook is:
inferred_vector = model.infer_vector(['only', 'you', 'can', 'prevent', 'forest', 'fires'])
sims = model.docvecs.most_similar([inferred_vector], topn=len(model.docvecs))
rank = [docid for docid, sim in sims]
print(rank)
Everytime I run the piece of code, I get different set of documents that are matching with this query: "only you can prevent forest fires". The difference is stark and just does not seem to match.
Is Doc2Vec not a suitable match for querying and information extraction? Or are there bugs?

Look into the code, in infer_vector you are using parts of the algorithm that is non-deterministic. Initialization of word vector is deterministic - see the code of seeded_vector, but when we look further, i.e., random sampling of words, negative sampling (updating only sample of word vector per iteration) could cause non-deterministic output (thanks #gojomo).
def seeded_vector(self, seed_string):
"""Create one 'random' vector (but deterministic by seed_string)"""
# Note: built-in hash() may vary by Python version or even (in Py3.x) per launch
once = random.RandomState(self.hashfxn(seed_string) & 0xffffffff)
return (once.rand(self.vector_size) - 0.5) / self.vector_size

Set negative=0 to avoid randomization:
import numpy as np
from gensim.models.doc2vec import Doc2Vec, TaggedDocument
documents = [list('asdf'), list('asfasf')]
documents = [TaggedDocument(doc, [i]) for i, doc in enumerate(documents)]
model = Doc2Vec(documents, vector_size=20, window=5, min_count=1, negative=0, workers=6, epochs=10)
a = list('test sample')
b = list('testtesttest')
for s in (a, b):
v1 = model.infer_vector(s)
for i in range(100):
v2 = model.infer_vector(s)
assert np.all(v1 == v2), "Failed on %s" % (''.join(s))

Related

NLP: Get opinionated terms that correspond to aspect terms

I want to extract the sentiment sentence that goes along an aspect term in a sentence. I have the following code:
import spacy
nlp = spacy.load("en_core_web_lg")
def find_sentiment(doc):
# find roots of all entities in the text
ner_heads = {ent.root.idx: ent for ent in doc.ents}
rule3_pairs = []
for token in doc:
children = token.children
A = "999999"
M = "999999"
add_neg_pfx = False
for child in children:
if(child.dep_ in ["nsubj"] and not child.is_stop): # nsubj is nominal subject
if child.idx in ner_heads:
A = ner_heads[child.idx].text
else:
A = child.text
if(child.dep_ in ["acomp", "advcl"] and not child.is_stop): # acomp is adjectival complement
M = child.text
# example - 'this could have been better' -> (this, not better)
if(child.dep_ == "aux" and child.tag_ == "MD"): # MD is modal auxiliary
neg_prefix = "not"
add_neg_pfx = True
if(child.dep_ == "neg"): # neg is negation
neg_prefix = child.text
add_neg_pfx = True
# print(child, child.dep_)
if (add_neg_pfx and M != "999999"):
M = neg_prefix + " " + M
if(A != "999999" and M != "999999"):
rule3_pairs.append((A, M))
return rule3_pairs
print(find_sentiment(nlp('NEW DELHI Refined soya oil remained weak for the second day and prices shed 0.56 per cent to Rs 682.50 per 10 kg in futures market today as speculators reduced positions following sluggish demand in the spot market against adequate stocks position.')))
Which gets me the output: [('oil', 'weak'), ('prices', 'reduced')]
But this is too little of the content of the text
I want to know if it is possible to get an output like: [('oil', 'weak'), ('prices', 'shed 0.56 percent'), ('demand', 'sluggish')]
Is there any approach you recomend trying?
I triedthe code given above. Also a another library of stanza which only got similar results.
Unfortunately, if your task is to extract all expressive words from the text (all the words that contain sentimental significance), then it is not possible with the current state of affairs. Language is highly variable, and the same word could change its sentiment and meaning from sentence to sentence. While words like "awful" are easy to classify as negative, "demand" from your text is not as obvious, not even speaking about edge cases when seemingly positive "incredible" may reverse its sentiment if used as empowerment: "incredibly stupid" should be classified as very negative, but machines can normally only output two opposite labels for those words.
This is why for purposes of sentimental analysis, the only reliable way is building machine learning model that will classify texts entirely, which means you should adapt your software to accept the final verdict and process it in some way or another.
Naive Bayes Classifier
The simplest way to classify text by sentiment is the Naive Bayes classifier algorithm (that, among other things, not only classifies sentiment) that is implemented in NLTK:
from nltk import NaiveBayesClassifier, classify
#The training data is a two-dimensional list of words to classify.
train_data = dataset[:7000]
test_data = dataset[7000:]
#Train method returns the trained model.
classifier = NaiveBayesClassifier.train(train_data)
#To get accuracy, use classify.accuracy method:
print("Accuracy is:", classify.accuracy(classifier, test_data))
In order to make a prediction, we need to pass a list of words. It's preferable to remove any words that do not play sentimental significance such as the stop words and punctuation so that it wouldn't disturb our model:
from nltk.corpus import stopwords
from nltk.tokenise import word_tokenise
def clearLexemes(words):
return [word if word not in stopwords.word("english")
or "!?<>:;.&*%^" in word for word in words]
text = "What a terrible day!"
tokens = clearLexemes(word_tokenise(text))
print("Text sentiment is " + str(classifier.classify(dict([token, True] for token in tokens)))))
The output will be the sentiment of the text.
The important notes:
requires a minimum parameters to train and trains relatively fast;
is highly efficient for working with natural languages (is also used for gender identification and named entity recognition);
is unlikely to properly classify edge cases when words shift their sentiment in creatively-styled or rare utterances. For example, "Sweetheart, I wish ll of your fears would come true and you will be happy to live in such world!" This sentence is negative and uses irony to mask negative attribute through positive expressions, and the model may not be able to detect this.
Linear Regression
Another related method is to use linear regression algorithms from your favourite machine learning framework. In this notebook I used the Amazon food review dataset
to measure how fast model accuracy increases as you feed it with more and more data. The data you need to feed the model is the raw text and its score label (that in your case could be sentiment).
import numpy as np #For converting strings to text
import pandas as pd
from sklearn.linear_model import LogisticRegression
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.metrics import confusion_matrix, classification_report
#Preparing the data
ys: pd.DataFrame = reviews.head(170536) #30% of the dataframe is test data
xs: pd.DataFrame = reviews[170537:] #70% of the dataframe is training data
#Training the model
lr = LogisticRegression(max_iter=1000)
cv = CountVectorizer(token_pattern=r'\b\w+\b')
train = cv.fit_transform(xs["Summary"].apply(lambda x: np.str_(x)))
test = cv.transform(ys["Summary"].apply(lambda x: np.str_(x)))
lr.fit(train, xs["Score"])
#Measuring accuracy:
predictions = lr.predict(test)
labels = ["x1", "x2", "x3", "x4", "x5"]
report = classification_report(predictions, ys["Score"],
target_names = labels, output_dict=True)
accuracy = [report[label]["precision"] for label in labels]
print(accuracy)
Conclusion
Investigating sentimental analysis is a worthwhile area of academic and industrial research that completely relies on machine learning and is bound to its limitations. It is a powerful topic that should be covered in the classical NLP suite. Unfortunately, currently understanding meaning close enough to be able to extract situational meaning is a feat close to inventing Artificial General Intelligence, however technology rapidly grows in that direction.

Customize OpenAI model: How to make sure answers are from customized data?

I'm using customized text with 'Prompt' and 'Completion' to train new model.
Here's the tutorial I used to create customized model from my data:
beta.openai.com/docs/guides/fine-tuning/advanced-usage
However even after training the model and sending prompt text to the model, I'm still getting generic results which are not always suitable for me.
How I can make sure completion results for my prompts will be only from the text I used for the model and not from the generic OpenAI models?
Can I use some flags to eliminate results from generic models?
Wrong goal: OpenAI API should answer from the fine-tuning dataset if the prompt is similar to the one from the fine-tuning dataset
It's the completely wrong logic. Forget about fine-tuning. As stated on the official OpenAI website:
Fine-tuning lets you get more out of the models available through the
API by providing:
Higher quality results than prompt design
Ability to train on more examples than can fit in a prompt
Token savings due to shorter prompts
Lower latency requests
Fine-tuning is not about answering with a specific answer from the fine-tuning dataset.
Fine-tuning helps the model gain more knowledge, but it has nothing to do with how the model answers. Why? The answer we get from the fine-tuned model is based on all knowledge (i.e., fine-tuned model knowledge = default knowledge + fine-tuning knowledge).
Although GPT-3 models have a lot of general knowledge, sometimes we want the model to answer with a specific answer (i.e., "fact").
Correct goal: Answer with a "fact" when asked about a "fact", otherwise answer with the OpenAI API
Note: For better (visual) understanding, the following code was ran and tested in Jupyter.
STEP 1: Create a .csv file with "facts"
To keep things simple, let's add two companies (i.e., ABC and XYZ) with a content. The content in our case will be a 1-sentence description of the company.
companies.csv
Run print_dataframe.ipynb to print the dataframe.
print_dataframe.ipynb
import pandas as pd
df = pd.read_csv('companies.csv')
df
We should get the following output:
STEP 2: Calculate an embedding vector for every "fact"
An embedding is a vector of numbers that helps us understand how semantically similar or different the texts are. The closer two embeddings are to each other, the more similar are their contents (source).
Let's test the Embeddings endpoint first. Run get_embedding.ipynb with an input This is a test.
Note: In the case of Embeddings endpoint, the parameter prompt is called input.
get_embedding.ipynb
import openai
openai.api_key = '<OPENAI_API_KEY>'
def get_embedding(model: str, text: str) -> list[float]:
result = openai.Embedding.create(
model = model,
input = text
)
return result['data'][0]['embedding']
print(get_embedding('text-embedding-ada-002', 'This is a test'))
We should get the following output:
What we see in the screenshot above is This is a test as an embedding vector. More precisely, we get a 1536-dimensional embedding vector (i.e., there are 1536 numbers inside). You are probably familiar with a 3-dimensional space (i.e., X, Y, Z). Well, this is a 1536-dimensional space which is very hard to imagine.
There are two things we need to understand at this point:
Why do we need to transform text into an embedding vector (i.e., numbers)? Because later on, we can compare embedding vectors and figure out how similar the two texts are. We can't compare texts as such.
Why are there exactly 1536 numbers inside the embedding vector? Because the text-embedding-ada-002 model has an output dimension of 1536. It's pre-defined.
Now we can create an embedding vector for each "fact". Run get_all_embeddings.ipynb.
get_all_embeddings.ipynb
import openai
from openai.embeddings_utils import get_embedding
import pandas as pd
openai.api_key = '<OPENAI_API_KEY>'
df = pd.read_csv('companies.csv')
df['embedding'] = df['content'].apply(lambda x: get_embedding(x, engine = 'text-embedding-ada-002'))
df.to_csv('companies_embeddings.csv')
The code above will take the first company (i.e., x), get its 'content' (i.e., "fact") and apply the function get_embedding using the text-embedding-ada-002 model. It will save the embedding vector of the first company in a new column named 'embedding'. Then it will take the second company, the third company, the fourth company, etc. At the end, the code will automatically generate a new .csv file named companies_embeddings.csv.
Saving embedding vectors locally (i.e., in a .csv file) means we don't have to call the OpenAI API every time we need them. We calculate an embedding vector for a given "fact" once and that's it.
Run print_dataframe_embeddings.ipynb to print the dataframe with the new column named 'embedding'.
print_dataframe_embeddings.ipynb
import pandas as pd
import numpy as np
df = pd.read_csv('companies_embeddings.csv')
df['embedding'] = df['embedding'].apply(eval).apply(np.array)
df
We should get the following output:
STEP 3: Calculate an embedding vector for the input and compare it with embedding vectors from the companies_embeddings.csv using cosine similarity
We need to calculate an embedding vector for the input so that we can compare the input with a given "fact" and see how similar these two texts are. Actually, we compare the embedding vector of the input with the embedding vector of the "fact". Then we compare the input with the second "fact", the third "fact", the fourth "fact", etc. Run get_cosine_similarity.ipynb.
get_cosine_similarity.ipynb
import openai
from openai.embeddings_utils import cosine_similarity
import pandas as pd
openai.api_key = '<OPENAI_API_KEY>'
my_model = 'text-embedding-ada-002'
my_input = '<INSERT_INPUT>'
def get_embedding(model: str, text: str) -> list[float]:
result = openai.Embedding.create(
model = my_model,
input = my_input
)
return result['data'][0]['embedding']
input_embedding_vector = get_embedding(my_model, my_input)
df = pd.read_csv('companies_embeddings.csv')
df['embedding'] = df['embedding'].apply(eval).apply(np.array)
df['similarity'] = df['embedding'].apply(lambda x: cosine_similarity(x, input_embedding_vector))
df
The code above will take the input and compare it with the first fact. It will save the calculated similarity of the two in a new column named 'similarity'. Then it will take the second fact, the third fact, the fourth fact, etc.
If my_input = 'Tell me something about company ABC':
If my_input = 'Tell me something about company XYZ':
If my_input = 'Tell me something about company Apple':
We can see that when we give Tell me something about company ABC as an input, it's the most similar to the first "fact". When we give Tell me something about company XYZ as an input, it's the most similar to the second "fact". Whereas, if we give Tell me something about company Apple as an input, it's the least similar to any of these two "facts".
STEP 4: Answer with the most similar "fact" if similarity is above our threshold, otherwise answer with the OpenAI API
Let's set our similarity threshold to >= 0.9. The code below should answer with the most similar "fact" if similarity is >= 0.9, otherwise answer with the OpenAI API. Run get_answer.ipynb.
get_answer.ipynb
# Imports
import openai
from openai.embeddings_utils import cosine_similarity
import pandas as pd
import numpy as np
# Insert your API key
openai.api_key = '<OPENAI_API_KEY>'
# Insert OpenAI text embedding model and input
my_model = 'text-embedding-ada-002'
my_input = '<INSERT_INPUT>'
# Calculate embedding vector for the input using OpenAI Embeddings endpoint
def get_embedding(model: str, text: str) -> list[float]:
result = openai.Embedding.create(
model = my_model,
input = my_input
)
return result['data'][0]['embedding']
# Save embedding vector of the input
input_embedding_vector = get_embedding(my_model, my_input)
# Calculate similarity between the input and "facts" from companies_embeddings.csv file which we created before
df = pd.read_csv('companies_embeddings.csv')
df['embedding'] = df['embedding'].apply(eval).apply(np.array)
df['similarity'] = df['embedding'].apply(lambda x: cosine_similarity(x, input_embedding_vector))
# Find the highest similarity value in the dataframe column 'similarity'
highest_similarity = df['similarity'].max()
# If the highest similarity value is equal or higher than 0.9 then print the 'content' with the highest similarity
if highest_similarity >= 0.9:
fact_with_highest_similarity = df.loc[df['similarity'] == highest_similarity, 'content']
print(fact_with_highest_similarity)
# Else pass input to the OpenAI Completions endpoint
else:
response = openai.Completion.create(
model = 'text-davinci-003',
prompt = my_input,
max_tokens = 30,
temperature = 0
)
content = response['choices'][0]['text'].replace('\n', '')
print(content)
If my_input = 'Tell me something about company ABC' and the threshold is >= 0.9 we should get the following answer from the companies_embeddings.csv:
If my_input = 'Tell me something about company XYZ' and the threshold is >= 0.9 we should get the following answer from the companies_embeddings.csv:
If my_input = 'Tell me something about company Apple' and the threshold is >= 0.9 we should get the following answer from the OpenAI API:

efficient way of calculating Monte Carlo results for different impact assessment methods in Brightway

I am trying to do a comparative monte carlo calculation with brightway2 using different impact assessment methods. I thought about using the switch_method method to be more efficient, since the technosphere matrix is the same for a given iteration. However, I am getting an assertion error. A code to reproduce it could be something like this
import brighway as bw
bw.projects.set_current('ei35') # project with ecoinvent 3.5
db = bw.Database("ei_35cutoff")
# select two different transport activities to compare
activity_name = 'transport, freight, lorry >32 metric ton, EURO4'
for activity in bw.Database("ei_35cutoff"):
if activity['name'] == activity_name:
truckE4 = bw.Database("ei_35cutoff").get(activity['code'])
print(truckE4['name'])
break
activity_name = 'transport, freight, lorry >32 metric ton, EURO6'
for activity in bw.Database("ei_35cutoff"):
if activity['name'] == activity_name:
truckE6 = bw.Database("ei_35cutoff").get(activity['code'])
print(truckE6['name'])
break
demands = [{truckE4: 1}, {truckE6: 1}]
# impact assessment method:
recipe_midpoint=[method for method in bw.methods.keys()
if method[0]=="ReCiPe Midpoint (H)"]
mc_mm = bw.MonteCarloLCA(demands[0], recipe_midpoint[0])
next(mc_mm)
If I try switch method I get the assertion error.
mc_mm.switch_method(recipe_midpoint[1])
assert mc_mm.method==recipe_midpoint[1]
mc_mm.redo_lcia()
next(mc_mm)
Am I doing something wrong here?
I usually store characterization factor matrices in a temporary dict and multiply these cfs with the LCI resulting from MonteCarloLCA directly.
import brightway2 as bw
import numpy as np
# Generate objects for analysis
bw.projects.set_current("my_mcs")
my_db = bw.Database('db')
my_act = my_db.random()
my_demand = {my_act:1}
my_methods = [bw.methods.random() for _ in range(2)]
I wrote this simple function to get characterization factor matrices for the product system I will generate in the MonteCarloLCA. It uses a temporara "sacrificial LCA" object that will have the same A and B matrices as the MonteCarloLCA.
This may seem like a waste of time, but it is only done once, and will make MonteCarlo quicker and simpler.
def get_C_matrices(demand, list_of_methods):
""" Return a dict with {method tuple:cf_matrix} for a list of methods
Uses a "sacrificial LCA" with exactly the same demand as will be used
in the MonteCarloLCA
"""
C_matrices = {}
sacrificial_LCA = bw.LCA(demand)
sacrificial_LCA.lci()
for method in list_of_methods:
sacrificial_LCA.switch_method(method)
C_matrices[method] = sacrificial_LCA.characterization_matrix
return C_matrices
Then:
# Create array that will store mc results.
# Shape is (number of methods, number of iteration)
my_iterations = 10
mc_scores = np.empty(shape=[len(my_methods), my_iterations])
# Instantiate MonteCarloLCA object
my_mc = bw.MonteCarloLCA(my_demand)
# Get characterization factor matrices
my_C_matrices = get_C_matrices(my_demand, my_methods)
# Generate results
for iteration in range(my_iterations):
lci = next(my_mc)
for i, m in enumerate(my_methods):
mc_scores[i, iteration] = (my_C_matrices[m]*my_mc.inventory).sum()
All your results are in mc_scores. Each row corresponds to a method, each column to an MC iteration.
Not very elegant, but try this:
iterations = 10
simulations = []
for _ in range(iterations):
mc_mm = MonteCarloLCA(demands[0], recipe_midpoint[0])
next(mc_mm)
mcresults = []
for i in demands:
print(i)
for m in recipe_midpoint[0:3]:
mc_mm.switch_method(m)
print(mc_mm.method)
mc_mm.redo_lcia(i)
print(mc_mm.score)
mcresults.append(mc_mm.score)
simulations.append(mcresults)
CC_truckE4 = [i[1] for i in simulations] # Climate Change, truck E4
CC_truckE6 = [i[1+3] for i in simulations] # Climate Change, truck E6
from matplotlib import pyplot as plt
plt.plot(CC_truckE4 , CC_truckE6, 'o')
If you then make a test and do twice the simulation for the same demand vector, by setting demands = [{truckE4: 1}, {truckE4: 1}] and plot the result you should get a straight line. This means that you are doing dependent sampling and re-using the same tech matrix for each demand vector and for each LCIA. I am not 100% sure of this but I hope it answers your question.

Is this text training with skip-gram correct?

I am still a beginner with neural networks and NLP.
In this code I'm training cleaned text (some tweets) with skip-gram.
But I do not know if I do it correctly.
Can anyone inform me about the correctness of this skip-gram text training?
Any help is appreciated.
This my code :
from nltk import word_tokenize
from gensim.models.phrases import Phrases, Phraser
sent = [row.split() for row in X['clean_text']]
phrases = Phrases(sent, max_vocab_size = 50, progress_per=10000)
bigram = Phraser(phrases)
sentences = bigram[sent]
from gensim.models import Word2Vec
w2v_model = Word2Vec(window=5,
size = 300,
sg=1)
w2v_model.build_vocab(sentences)
w2v_model.train(sentences, total_examples=w2v_model.corpus_count, epochs=25)
del sentences #to reduce memory usage
def get_mat(model, corpus, size):
vecs = np.zeros((len(corpus), size))
n = 0
for i in corpus.index:
vecs[i] = np.zeros(size).reshape((1, size))
for word in str(corpus.iloc[i,0]).split():
try:
vecs[i] += model[word]
#n += 1
except KeyError:
continue
return vecs
X_sg = get_vectors(w2v_model, X, 300)
del X
X_sg=pd.DataFrame(X_sg)
X_sg.head()
from sklearn import preprocessing
scale = preprocessing.normalize
X_sg=scale(X_sg)
for i in range(len(X_sg)):
X_sg[i]+=1 #I did this because some weights where negative! So could not
#apply LSTM on them later
You haven't mentioned if you've received any errors, or unsatisfactory results, so it's hard to know what kind of help you might need.
Your specific lines of code involving the Word2Vec model are roughly correct: plausibly-useful parameters (if you have a dataset large enough to train 300-dimensional vectors), and the proper steps. So the real proof would be whether your results are acceptable.
Regarding your attempted use of Phrases bigram-creation beforehand:
You should get things generally working and with promising results before adding this extra pre-processing complexity.
The parameter max_vocab_size=50 is seriously misguided and may make the phrases-step pointless. The max_vocab_size is a hard cap on how many words/bigrams are tallied by the class, as a way to cap its memory-usage. (Whenever the number of known words/bigrams hits this cap, many lower-frequency words/bigrams are pruned – in practice, a majority of all words/bigrams each pruning, giving up a lot of accuracy in return for capped memory usage.) The max_vocab_size default in gensim is 40,000,000 – but the default in the Google word2phrase.c source on which gensim's method is based was 500,000,000. By using just 50, it's not really going to learn anything useful about just whatever 50 words/bigrams survive the many prunings.
Regarding your get_mat() function & later DataFrame code, i have no idea what you're trying to do with it, so can't offer any opinion on it.

How to merger NaiveBayesClassifier object in NLTK

I am working on a project using the NLTK toolkit. With the hardware I have, I am able to run the classifier object on a small data set. So, I divided the data into smaller chunks and running the classifier object in them while storing all these individual object in a pickle file.
Now for testing I need to have the whole object as one to get better result. So my question is how can I combine these objects into one.
objs = []
while True:
try:
f = open(picklename,"rb")
objs.extend(pickle.load(f))
f.close()
except EOFError:
break
Doing this does not work. And it gives the error TypeError: 'NaiveBayesClassifier' object is not iterable.
NaiveBayesClassifier code :
classifier = nltk.NaiveBayesClassifier.train(training_set)
I am not sure about the exact format of your data, but you can not simply merge different classifiers. The Naive Bayes classifier stores a probability distribution based on the data it was trained on, and you can not merge probability distributions without access to the original data.
If you look at the source code here: http://www.nltk.org/_modules/nltk/classify/naivebayes.html
an instance of the classifier stores:
self._label_probdist = label_probdist
self._feature_probdist = feature_probdist
these are calculated in the train method using relative frequency counts. (e.g P(L_1) = (# of L1 in training set) / (# labels in training set). To combine the two, you would want to get (# of L1 in Train 1 + Train 2)/(# of labels in T1 + T2).
However, the naive bayes procedure isn't too hard to implement from scratch, especially if you follow the 'train' source code in the link above. Here is an outline, using the NaiveBayes source code
Store 'FreqDist' objects for each subset of the data for the labels and features.
label_freqdist = FreqDist()
feature_freqdist = defaultdict(FreqDist)
feature_values = defaultdict(set)
fnames = set()
# Count up how many times each feature value occurred, given
# the label and featurename.
for featureset, label in labeled_featuresets:
label_freqdist[label] += 1
for fname, fval in featureset.items():
# Increment freq(fval|label, fname)
feature_freqdist[label, fname][fval] += 1
# Record that fname can take the value fval.
feature_values[fname].add(fval)
# Keep a list of all feature names.
fnames.add(fname)
# If a feature didn't have a value given for an instance, then
# we assume that it gets the implicit value 'None.' This loop
# counts up the number of 'missing' feature values for each
# (label,fname) pair, and increments the count of the fval
# 'None' by that amount.
for label in label_freqdist:
num_samples = label_freqdist[label]
for fname in fnames:
count = feature_freqdist[label, fname].N()
# Only add a None key when necessary, i.e. if there are
# any samples with feature 'fname' missing.
if num_samples - count > 0:
feature_freqdist[label, fname][None] += num_samples - count
feature_values[fname].add(None)
# Use pickle to store label_freqdist, feature_freqdist,feature_values
Combine those using their built-in 'add' method. This will allow you to get the relative frequency across all the data.
all_label_freqdist = FreqDist()
all_feature_freqdist = defaultdict(FreqDist)
all_feature_values = defaultdict(set)
for file in train_labels:
f = open(file,"rb")
all_label_freqdist += pickle.load(f)
f.close()
# Combine the default dicts for features similarly
Use the 'estimator' to create a probability distribution.
estimator = ELEProbDist()
label_probdist = estimator(all_label_freqdist)
# Create the P(fval|label, fname) distribution
feature_probdist = {}
for ((label, fname), freqdist) in all_feature_freqdist.items():
probdist = estimator(freqdist, bins=len(all_feature_values[fname]))
feature_probdist[label, fname] = probdist
classifier = NaiveBayesClassifier(label_probdist, feature_probdist)
The classifier will not combine the counts across all the data and produce what you need.

Resources