How can I test my pytorch model on validation data during training?
I know that there is the function myNet.eval() which apparantly switches of any dropout layers, but is it also preventing the gradients from being accumulated?
Also how would I undo the myNet.eval() command in order to continue with the training?
If anyone has some code snippet / toy example I would be grateful!
How can I test my pytorch model on validation data during training?
There are plenty examples where there are train and test steps for every epoch during training. An easy one would be the official MNIST example. Since pytorch does not offer any high-level training, validation or scoring framework you have to write it yourself. Commonly this consists of
a data loader (commonly based on torch.utils.dataloader.Dataloader)
a main loop over the total number of epochs
a train() function that uses training data to optimize the model
a test() or valid() function to measure the effectiveness of the model given validation data and a metric
This is also what you will find in the linked example.
Alternatively you can use a framework that provides basic looping and validation facilities so you don't have to implement everything by yourself all the time.
tnt is torchnet for pytorch, supplying you with different metrics (such as accuracy) and abstraction of the train loop. See this MNIST example.
inferno and torchsample attempt to model things very similar to Keras and provide some tools for validation
skorch is a scikit-learn wrapper for pytorch that lets you use all the tools and metrics from sklearn
Also how would I undo the myNet.eval() command in order to continue with the training?
myNet.train() or, alternatively, supply a boolean to switch between eval and training: myNet.train(True) for train mode.
I know that there is the function myNet.eval() which apparantly switches of any dropout layers, but is it also preventing the gradients from being accumulated?
It doesn't prevent gradients from accumulating.
But I think during testing, you do want to ignore gradients. In that case, you should mark the variable input to the network as volatile=True, and it will save some time and space used in forward calculation.
Also how would I undo the myNet.eval() command in order to continue with the training?
myNet.train()
Related
I have trained a model and it took me quite a while to find the correct hyperparameters.
The model has now been trained for 15h and it seems to to its job quite well.
When I observed the training and validation loss though, the training loss is somewhat higher than the validation loss. (red curve: training, green: validation)
I use dropout to regularize my model and as far as I have understood, droput is is only applied during training which might be the reason.
Now Iam wondering if I have trained a valid model?
It doesn't seem like the model is heavily underfitted?
Thanks in advance for any advice,
cheers,
M
First, check whether you have good data set, i.e., if it is a classification, then get equal number of images for all classes and get it from same source not from different sources. And regularization, dropout are used for overfitting/High variance so don't worry about these.
Then, I think your model is doing good when you trained your model the initial error between them are different but as you increased the epochs then they both got into some steady path. So it is good. And may be reason for this is as I mentioned above or you should try shuffle them then using train_test_split for getting better distribution of training and validation sets.
A plot of learning curves shows a good fit if:
The plot of training loss decreases to a point of stability.
The plot of validation loss decreases to a point of stability and has a small gap with the training loss.
In your case these conditions are satisfied.
Still if you want to deal with High Bias/underfitting then here are few methods:
Train bigger models
Train longer. Use better optimization techniques
Try different Neural Network Architecture and also hyper parameters
And also you can use cross-validation or GridSearchCV for finding better optimizer or hyper parameters but it may take really long because you have to train it on different parameters each time considering your time which is 15 hours then it might be very long but you will find better parameters and then train on it.
Above all I think your model is doing okay.
If your model underfits, its performance will be lower, similar as in the case of overfitting, because actually it can not learn effectively to get the optimal result, i.e the proper function to fit the given distribution. So you have to use less regularization technique e.g. less dropout to get the optimal result.
Furthermore the sampling can also be crucial, because there can be training-validation subsets where your model performs well on validation set and less effective on training set and vice-versa. This is one of the reason why we use crossvalidation and different sampling methods e.g. stratified k-fold.
I have a machine learning model built that tries to predict weather data, and in this case I am doing a prediction on whether or not it will rain tomorrow (a binary prediction of Yes/No).
In the dataset there is about 50 input variables, and I have 65,000 entries in the dataset.
I am currently running a RNN with a single hidden layer, with 35 nodes in the hidden layer. I am using PyTorch's NLLLoss as my loss function, and Adaboost for the optimization function. I've tried many different learning rates, and 0.01 seems to be working fairly well.
After running for 150 epochs, I notice that I start to converge around .80 accuracy for my test data. However, I would wish for this to be even higher. However, it seems like the model is stuck oscillating around some sort of saddle or local minimum. (A graph of this is below)
What are the most effective ways to get out of this "valley" that the model seems to be stuck in?
Not sure why exactly you are using only one hidden layer and what is the shape of your history data but here are the things you can try:
Try more than one hidden layer
Experiment with LSTM and GRU layer and combination of these layers together with RNN.
Shape of your data i.e. the history you look at to predict the weather.
Make sure your features are scaled properly since you have about 50 input variables.
Your question is little ambiguous as you mentioned RNN with a single hidden layer. Also without knowing the entire neural network architecture, it is tough to say how can you bring in improvements. So, I would like to add a few points.
You mentioned that you are using "Adaboost" as the optimization function but PyTorch doesn't have any such optimizer. Did you try using SGD or Adam optimizers which are very useful?
Do you have any regularization term in the loss function? Are you familiar with dropout? Did you check the training performance? Does your model overfit?
Do you have a baseline model/algorithm so that you can compare whether 80% accuracy is good or not?
150 epochs just for a binary classification task looks too much. Why don't you start from an off-the-shelf classifier model? You can find several examples of regression, classification in this tutorial.
I am using the object detector api for quite a while now so training models and use them for inference is all good. Unfortunately, when using TensorBoard to visualize metrics (such as mAP, AR, classification/localization loss) we only get to see those metrics on the validation set. I'd like to calculate the aforementioned metrics also during training so that we can compare train/validation metrics on Tensorboard.
edit: I've stumbled on this post which addresses the same concern how to check both training/eval performances in tensorflow object_detection
Anyone got a pointer on how to achieve this?
You can evaluate your model on the training data by adding the arguments --eval_training_data=True --sample_1_of_n_eval_on_train_examples=10 to the arguments of model_main.
By doing so, you instruct it to perform the evaluation on the training data, and you choose how much to dilute the training data sent to evaluation, since usually the amount of training data is very large.
The thing is that I don't think it's currently possible to evaluate both on training on validation data, but I don't think it's too bad, since usually evaluation on training data is only for sanity check, and not for actual continuous evaluation the model.
Keras 2.0 removed F1 score, but I would like to monitor its value. I am using a sequential model to train a Neural Net.
I defined a function, as suggested here How to calculate F1 Macro in Keras?.
This function works fine only if used it inside model.compile. In this way I see its value at each step. The problem is that I don't want just to see its value but I would like my training to behave differently according to its value, using the callbacks of Keras.
If I try to insert my custom metric in the callbacks then I get this error:
'function object is not iterable'
Do you know how to define a function such that it can be used as an argument in the callbacks?
Callback of Keras will enable us to retrieve the model at different period, based on the metric which we keep track of. This will not affect the training procedure of the model.
You can train your model only with respect to some loss function. For example, cross entropy for classification problem. The readily available loss function in keras are given here
Precision, recall or f1-score are not differentialable functions. Hence, we cannot use that as a loss function for model training.
May be, if you want to tune your hyperparameter (such as learning rate, class weights) for improving f1 score, then you can be do that.
For tuning hyper parameters you can use hyperopt, tutorials
I have a set of sentences and their scores, I would like to train a marking system that could predict the score for a given sentence, such one example is like this:
(X =Tomorrow is a good day, Y = 0.9)
I would like to use LSTM to build such a marking system, and also consider the sequential relationship between each word in the sentence, so the training example shown above is transformed as following:
(x1=Tomorrow, y1=is) (x2=is, y2=a) (x3=a, y3=good) (x4=day, y4=0.9)
When training this LSTM, I would like the first three time steps using a softmax classifier, and the final step using a MSE. It is obvious that the loss function used in this LSTM is composed of two different loss functions. In this case, it seems the Keras does not provide the way to address my problem directly. In addition, I am not sure whether my method to build the marking system is correct or not.
Keras support multiple loss functions as well:
model = Model(inputs=inputs,
outputs=[lang_model, sent_model])
model.compile(optimizer='sgd',
loss=['categorical_crossentropy', 'mse'],
metrics=['accuracy'], loss_weights=[1., 1.])
Based on your explanation, I think you need a model that first, predict a token based on previous tokens, in NLP domain it usually called Language model, and then compute a score which I assume it is a sentiment (it is applicable to other domain).
To do so, you can train your language model with LSTM and pick the last output of LSTM for your ranking task. To this end, you need to define two loss function: categorical_crossentropy for the language model and MSE for the ranking task.
This tutorial would be helpful: https://www.pyimagesearch.com/2018/06/04/keras-multiple-outputs-and-multiple-losses/