spark executors on mesos are unbalanced when setting role quota - apache-spark

I am going to run spark job on mesos, and I want to limit resource of specified role.
I try to run 5 executors in my job
spark-shell \
--master mesos://zk://host1:2181,host2:2181,host3:2181/mesos \
--conf spark.executor.cores=1 \
--conf spark.cores.max=5 \
--conf spark.mesos.role=myrole
It works well that I can get many resource offers to distribute executors when quota setting is disable.
18/01/25 13:35:49 DEBUG MesosCoarseGrainedSchedulerBackend: Received 4 resource offers.
If I enable quota setting(http://mesos.apache.org/documentation/latest/quota/), then I always get only 1 resource offer.
18/01/25 13:36:31 DEBUG MesosCoarseGrainedSchedulerBackend: Received 1 resource offers.
I have no idea what happened there
My environment:
spark 2.2
mesos 1.4.1 (master*3, slave*5)
CentOS 7.3

Related

dse spark-submit to specific work pool instead of "default"

I am able to successfully build the example project from https://github.com/datastax/SparkBuildExamples/tree/master/scala/sbt/dse/src/main/scala/com/datastax/spark/example
I am also successful in submitting dse spark-submit. The program runs fine and results are good as expected
dse spark-submit --class com.datastax.spark.example.WriteRead target/writeRead-0.1.jar
I now wish to submit it the above job to an existing pool as configured in dse.yaml
resource_manager_options:
worker_options:
cores_total: 6
memory_total: 32G
workpools:
- name: alwayson_sql
cores: 2
memory: 4G
- name: pool_1
cores: 2
memory: 16G
I am unable to determine how/what changes in code or spark-submit that I should do in order to submit the application to the pool "pool_1"
The application is submitted to the default pool and I am unable to submit it to "pool_1".
Please help.
After some additional research I figured out the correct way to dse spark-submit to use the pool "pool_1"
bin/dse spark-submit \
--master dse://?workpool=pool_1 \
--conf spark.network.timeout=500 \
--class com.datastax.spark.example.WriteRead target/writeRead-0.1.jar
(Per input from Alex)DSE Documentation:
Documentation link

What is happening when starting a Spark application on Kubernetes

I read this: Running Spark on Kubernetes.
I want to know more details about the interaction between Kubernetes Controller/Scheduler and Spark runtime when launching a Spark job on K8s.
Specially, assuming we launch an Spark app by :
bin/spark-submit \
--master k8s://https://<k8s-apiserver-host>:<k8s-apiserver-port> \
--deploy-mode cluster \
--name spark-pi \
--class org.apache.spark.examples.SparkPi \
--conf spark.executor.instances=5 \
--..............
My question is: the K8s may not be able to allocate 5 executors (or called containers/pods) immediately due to unavailability of cluster resources at the moment the Spark app is launched. Which way does Spark app take? (1) Spark starts running tasks as soon as possible when there is at least one executor is allocated. (2) Spark won't launch any tasks until all of the 5 executors have been allocated.
If you know Hadoop YARN, it would be great if you could also answer the question in the scenario of running Spark app on Hadoop YARN(DynamicAllocation Disabled) and point out the difference.

Spark client mode - YARN allocates a container for driver?

I am running Spark on YARN in client mode, so I expect that YARN will allocate containers only for the executors. Yet, from what I am seeing, it seems like a container is also allocated for the driver, and I don't get as many executors as I was expecting.
I am running spark submit on the master node. Parameters are as follows:
sudo spark-submit --class ... \
--conf spark.master=yarn \
--conf spark.submit.deployMode=client \
--conf spark.yarn.am.cores=2 \
--conf spark.yarn.am.memory=8G \
--conf spark.executor.instances=5 \
--conf spark.executor.cores=3 \
--conf spark.executor.memory=10G \
--conf spark.dynamicAllocation.enabled=false \
While running this application, Spark UI's Executors page shows 1 driver and 4 executors (5 entries in total). I would expect 5, not 4 executors.
At the same time, YARN UI's Nodes tab shows that on the node that isn't actually used (at least according to Spark UI's Executors page...) there's a container allocated, using 9GB of memory. The rest of the nodes have containers running on them, 11GB of memory each.
Because in my Spark Submit the driver has 2GB less memory than executors, I think that the 9GB container allocated by YARN is for the driver.
Why is this extra container allocated? How can i prevent this?
Spark UI:
YARN UI:
Update after answer by Igor Dvorzhak
I was falsely assuming that the AM will run on the master node, and that it will contain the driver app (so setting spark.yarn.am.* settings will relate to the driver process).
So I've made the following changes:
set the spark.yarn.am.* settings to defaults (512m of memory, 1 core)
set the driver memory through spark.driver.memory to 8g
did not try to set driver cores at all, since it is only valid for cluster mode
Because AM on default settings takes up 512m + 384m of overhead, its container fits into the spare 1GB of free memory on a worker node.
Spark gets the 5 executors it requested, and the driver memory is appropriate to the 8g setting. All works as expected now.
Spark UI:
YARN UI:
Extra container is allocated for YARN application master:
In client mode, the driver runs in the client process, and the application master is only used for requesting resources from YARN.
Even though in client mode driver runs in the client process, YARN application master is still running on YARN and requires container allocation.
There are no way to prevent container allocation for YARN application master.
For reference, similar question asked time ago: Resource Allocation with Spark and Yarn.
You can specify the driver memory and number of executors in spark submit as below.
spark-submit --jars..... --master yarn --deploy-mode cluster --driver-memory 2g --driver-cores 4 --num-executors 5 --executor-memory 10G --executor-cores 3
Hope it helps you.

Spark Standalone: application gets 0 cores

I seem to be unable to assign cores to an application. This leads to the following (apparently common) error message:
Initial job has not accepted any resources; check your cluster UI to ensure that workers are registered and have sufficient resources
I have one master and two slaves in a Spark cluster. All are 8-core i7s with 16GB of RAM.
I have left the spark-env.sh virtually virgin on all three, just specifying the master's IP address.
My spark-submit is the following:
nohup ./bin/spark-submit
--jars ./ikoda/extrajars/ikoda_assembled_ml_nlp.jar,./ikoda/extrajars/stanford-corenlp-3.8.0.jar,./ikoda/extrajars/stanford-parser-3.8.0.jar \
--packages datastax:spark-cassandra-connector:2.0.1-s_2.11 \
--class ikoda.mlserver.Application \
--conf spark.cassandra.connection.host=192.168.0.33 \
--conf spark.cores.max=4 \
--driver-memory 4g –num-executors 2 --executor-memory 2g --executor-cores 2 \
--master spark://192.168.0.141:7077 ./ikoda/ikodaanalysis-mlserver-0.1.0.jar 1000 > ./logs/nohup.out &
I suspect I am conflating the sparkConf initialization in my code with the spark-submit. I need this as the app involves SparkStreaming which can require reinitializing the SparkContext.
The sparkConf setup is as follows:
val conf = new SparkConf().setMaster(s"spark://$sparkmaster:7077").setAppName("MLPCURLModelGenerationDataStream")
conf.set("spark.streaming.stopGracefullyOnShutdown", "true")
conf.set("spark.cassandra.connection.host", sparkcassandraconnectionhost)
conf.set("spark.driver.maxResultSize", sparkdrivermaxResultSize)
conf.set("spark.network.timeout", sparknetworktimeout)
conf.set("spark.jars.packages", "datastax:spark-cassandra-connector:"+datastaxpackageversion)
conf.set("spark.cores.max", sparkcoresmax)
The Spark UI shows the following:
OK, this is definitely a case of programmer error.
But maybe others will make a similar error. The Master had been used as a local Spark previously. I had put some executor settings in spark-defaults.conf and then months later had forgotten about this.
There is a cascading hierarchy whereby SparkConf settings get precedence, then spark-submit settings and then spark-defaults.conf. spark-defaults.conf overrides defaults set by Apache Spark team
Once I removed the settings from spark-defaults, all was fixed.
It is because of the maximum of your physical memory.
your spark memory in spark UI 14.6GB So you must request memory for each executor below the volume
14.6GB, for this you can add config to your spark conf something like this:
conf.set("spark.executor.memory", "10gb")
if you request more than your physical memory spark does't allocate cpu cores to your job and display 0 in Cores in spark UI and run NOTHING.

Spark-submit in Spark stand alone - all memory gone to the drivers

I have setup a Spark standalone cluster, where I can submit jobs with spark-submit:
spark-submit \
--class blah.blah.MyClass \
--master spark://myaddress:6066 \
--executor-memory 8G \
--deploy-mode cluster \
--total-executor-cores 12 \
/path/to/jar/myjar.jar
Problem is when I send multiple jobs at the same time, say over 20 in one go, the first few finished successfully. All the others are now stuck waiting for resources. I noticed all the available memory has gone to the drivers, so in the drivers section they are all running but in the running application section they all are in WAITING state.
How can I tell spark stand alone to first allocate memory to the WAITING executors instead of the SUBMITTED drivers?
thank you
Below is an extract of my spark-defaults.conf
spark.master spark://address:7077
spark.eventLog.enabled true
spark.eventLog.dir /path/tmp/sparkEventLog
spark.driver.memory 5g
spark.local.dir /path/tmp
spark.ui.port xxx

Resources