I am trying to store all the scheduler jobs in Cassandra.
I designed all the locking tables and seems fine. I am finding difficulty in creating a job queue table.
My Requirement is
1) I need to query all the jobs whichever is not completed.
CREATE TABLE jobs(
jobId text,
startTime timestamp,
endTime timestamp,
status text,
state text,
jobDetails text,
primary key (X,X))
with clustering order by (X desc);
where, state - on / off
status - running / failed / completed
I am not sure which one to keep as primary key (Since it is unique), Also I need to query all the jobs in 'on' state. Could somebody help me in designing this in Cassandra. Even If you propose anything with composite partition key, I am fine with it.
Edited :
I come up with the data model like this ,
CREATE TABLE job(
jobId text,
startTime timestamp,
endTime timestamp,
state text,
status text,
jobDetails text,
primary key (state,jobId, startTime)
with clustering order by (startTime desc);
I am able to insert like this,
INSERT INTO job (jobId, startTime, endTime, status,state, jobDetails) VALUES('nodestat',toTimestamp(now()), 0,'running','on','{
"jobID": "job_0002",
"jobName": "Job 2",
"description": "This does job 2",
"taskHandler": require("./jobs/job2").runTask,
"intervalInMs": 1000
}');
Query like this,
SELECT * FROM job WHERE state = 'on';
will this create any performance impact ?
You are maybe implementing an antipattern for cassandra.
See https://www.datastax.com/dev/blog/cassandra-anti-patterns-queues-and-queue-like-datasets for a blog post discussing what might be your problem when using cassandra as message queue.
Apart from that, there is some information how to do it the "right way" in cassandra on Slideshare: https://de.slideshare.net/alimenkou/high-performance-queues-with-cassandra
There are many projects out there which fit scheduling and or messaging better, for example http://www.quartz-scheduler.org/overview/features.html.
Update for your edit above:
primary key (state,jobId, startTime)
This will create one partition for each state - resulting in huge partitions and hotspots. Transitioning a jobs state will move it to a different partition - you will have deleted entries and possible compation and performance issues (depending on your number of jobs).
All jobs with state='on' will be on one node (and it's replicas) all jobs with state='off' on another node. You will have two partitions in your design.
Since you are open to changes to the model, see if below model works for you
CREATE TABLE job(
partition_key,
jobId text,
startTime timestamp,
endTime timestamp,
state text,
status text,
jobDetails text,
primary key (partition_key,state,jobId, startTime)
with clustering order by (startTime desc);
Here the partion_key column value can be calculated based on your volume of jobs.
For example:
If your job count is less than 100K jobs for a single day, then you can keep the partition at single day level i.e. YYYYMMDD (20180105) or if it is 100K per one hour, you can change it to YYYYMMDDHH (2018010518). Change the cluster columns depending upon your filtering order.
This way you can able to query the state only if you know when you want to query.
Avoiding creating too many partitions or exploding the partition with too many columns
It will evenly distribute load into partitions.
It will be helpful to design the model better if you can specify what adjustments/additions you can make to your query.
You need to include equality columns in partition key so your equality columns are status and state. You need to check whether these 2 makes good partition key or not, if not you need to use either custom column or any other existing column as part of partition key. As jobid is to make record unique you can keep it in clustering column. I am assuming you are not querying table on job id.
Related
I'm debugging an issue and the logs should be sitting on a time range between 4/23/19~ 4/25/19
There are hundreds of millions of records on our production.
It's impossible to locate the target records using random sort.
Is there any workaround to search in a time range without partition key?
select * from XXXX.report_summary order by modified_at desc
Schema
...
"modified_at" "TimestampType" "regular"
"record_end_date" "TimestampType" "regular"
"record_entity_type" "UTF8Type" "clustering_key"
"record_frequency" "UTF8Type" "regular"
"record_id" "UUIDType" "partition_key"
First, ORDER BY is really quite superfluous in Cassandra. It can only operate on your clustering columns within a partition, and then only on the exact order of the clustering columns. The reason for this, is that Cassandra reads sequentially from the disk, so it writes all data according to the defined clustering order to begin with.
So IMO, ORDER BY in Cassandra is pretty useless, except for cases where you want to change the sort direction (ascending/descending).
Secondly, due to its distributed nature, you need to take a query-oriented approach to data modeling. In other words, your tables must be designed to support the queries you intend to run. Now you can find ways around this, but then you're basically doing a full table scan on a distributed cluster, which won't end well for anyone.
Therefore, the recommended way to go about that, would be to build a table like this:
CREATE TABLE stackoverflow.report_summary_by_month (
record_id uuid,
record_entity_type text,
modified_at timestamp,
month_bucket bigint,
record_end_date timestamp,
record_frequency text,
PRIMARY KEY (month_bucket, modified_at, record_id)
) WITH CLUSTERING ORDER BY (modified_at DESC, record_id ASC);
Then, this query will work:
SELECT * FROM report_summary_by_month
WHERE month_bucket = 201904
AND modified_at >= '2019-04-23' AND modified_at < '2019-04-26';
The idea here, is that as you care about the order of the results, you need to partition by something else to allow for sorting to work. For this example, I picked month, hence I've "bucketed" your results by month into a partition key called month_bucket. Within each month, I'm clustering on modified_at in DESCending order. This way, the most-recent results are at the "top" of the partition. Then, I threw in record_id as a tie-breaker key to help ensure uniqueness.
If you're still focused on doing this the wrong way:
You can actually run a range query on your current schema. But with "hundreds of millions of records" across several nodes, I don't have high hopes for that to work. But you can do it with the ALLOW FILTERING directive (which you shouldn't ever really use).
SELECT * FROM report_summary
WHERE modified_at >= '2019-04-23'
AND modified_at < '2019-04-26' ALLOW FILTERING;
This approach has the following caveats:
With many records across many nodes, it will likely time out.
Without being able to identify a single partition for this query, a coordinator node will be chosen, and that node has a high chance of becoming overloaded.
As this is pulling rows from multiple partitions, a sort order cannot be enforced.
ALLOW FILTERING makes Cassandra work in ways that it really wasn't designed to, so I would never use that on a production system.
If you really need to run a query like this, I recommend using an in-memory aggregation tool, like Spark.
Also, as the original question was about ORDER BY, I wrote an article a while back which better explains this topic: https://www.datastax.com/dev/blog/we-shall-have-order
I have a table in Cassandra where i am storing events as they are coming in , different processing are done on the events at different stages. The events are entered into the table with the event occurrence time. I need to get all the events whose event time is less than a certain time and do some processing on them. As its a select range query and its invariably will use scatter gather. Can some one suggest best way to do this. This process is going to happen in every 5 secs and scatter gather happening in Cassandra happening frequently is not a good idea as its an overhead on Cassandra itself which will degrade my overall application Performance.
The table is as below:
PAS_REQ_STAGE (PartitionKey = EndpointID, category ; clusterkey= Automation_flag,alertID)
AlertID
BatchPickTime: Timestamp
Automation_Threshold
ResourceID
ConditionID
category
Automation_time: Timestamp
Automation_flag
FilterValue
Eventtime which i have referred above is the BatchPickTime..
A scheduler wakes up at regular interval and gets all the records whose BatchPickTime is Less than the current scheduler wakeup time and sweeps them off from the table to process them.
Because of this usecase i cannot provide any specific Partition key for the query as it will have to get all data which has expired and is less than the current scheduler wake-up time.
Hi and welcome to Stackoverflow.
Please post your schema and maybe some example code with your question - you can edit it :)
The Cassandra-way of doing this is to denormalize data if necessary and build your schema around your queries. In your case I would suggest putting your events in to a table together with a time bucket:
CREATE TABLE events (event_source int, bucket timestamp,
event_time timestamp, event_text text PRIMARY KEY ((event_source, bucket),event_time));
The reason for this is that it is very efficent in cassandra to select a row by its so called partition key (in this example (event_source, bucket)) as such a query hits only one node. The reminder of the primary key is called clustering columns and defines the order of data, here all events for a day inside the bucket are sorted by event_time.
Try to model your event table in a way that you do not need to make multiple queries. There is a good and free data modeling course from DataStax available: https://academy.datastax.com/resources/ds220-data-modeling
One note - be careful when using cassandra as queue - this is maybe an antipattern and you might be better of with a message queue as ActiveMQ or RabbitMQ or similar.
I am fairly new to Cassandra and currently have to following table in Cassandra:
CREATE TABLE time_data (
id int,
secondary_id int,
timestamp timestamp,
value bigint,
PRIMARY KEY ((id, secondary_id), timestamp)
);
The compound partition key (with secondary_id) is necessary in order to not violate max partition sizes.
The issue I am running in to is that I would like to complete the query SELECT * FROM time_data WHERE id = ?. Because the table has a compound partition key, this query requires filtering. I realize this is a querying a lot of data and partitions, but it is necessary for the application. For reference, id has relatively low cardinality and secondary_id has high cardinality.
What is the best way around this? Should I simply allow filtering on the query? Or is it better to create a secondary index like CREATE INDEX id_idx ON time_data (id)?
You will need to specify full partition key on queries (ALLOW FILTERING will impact performance badly in most cases).
One way to go could be if you know all secondary_id (you could add a table to track them in necessary) and do the job in your application and query all (id, secondary_id) pairs and process them afterwards. This has the disadvantage of beeing more complex but the advantage that it can be done with async queries and in parallel so many nodes in your cluster participate in processing your task.
See also https://www.datastax.com/dev/blog/java-driver-async-queries
I have a table of events and would like to extract the first timestamp (column unixtime) for each user.
Is there a way to do this with a single Cassandra query?
The schema is the following:
CREATE TABLE events (
id VARCHAR,
unixtime bigint,
u bigint,
type VARCHAR,
payload map<text, text>,
PRIMARY KEY(id)
);
CREATE INDEX events_u
ON events (u);
CREATE INDEX events_unixtime
ON events (unixtime);
CREATE INDEX events_type
ON events (type);
According to your schema, each user will have a single time stamp. If you want one event per entry, consider:
PRIMARY KEY (id, unixtime).
Assuming that is your schema, the entries for a user will be stored in ascending unixtime order. Be careful though...if it's an unbounded event stream and users have lots of events, the partition for the id will grow and grow. It's recommended to keep partition sizes to tens or hundreds of megs. If you anticipate larger, you'll need to start some form of bucketing.
Now, on to your query. In a word, no. If you don't hit a partition (by specifying the partition key), your query becomes a cluster wide operation. With little data it'll work. But with lots of data, you'll get timeouts. If you do have the data in its current form, then I recommend you use the Cassandra Spark connector and Apache Spark to do your query. An added benefit of the spark connectory is that if you have cassandra nodes as spark worker nodes, due to locality, you can efficiently hit a secondary index without specifying the partition key (which would normally cause a cluster wide query with timeout issues, etc.). You could even use Spark to get the required data and store it into another cassandra table for fast querying.
Say, I want to collect logs from a huge application cluster which produces 1000-5000 records per second. In future this number might reach 100000 records per second, aggregated from a 10000-strong datacenter.
CREATE TABLE operation_log (
-- Seconds will be used as row keys, thus each row will
-- contain 1000-5000 log messages.
time_s bigint,
time_ms int, -- Microseconds (to sort data within one row).
uuid uuid, -- Monotonous UUID (NOT time-based UUID1)
host text,
username text,
accountno bigint,
remoteaddr inet,
op_type text,
-- For future filters — renaming a column must be faster
-- than adding a column?
reserved1 text,
reserved2 text,
reserved3 text,
reserved4 text,
reserved5 text,
-- 16*n bytes of UUIDs of connected messages, usually 0,
-- sometimes up to 100.
submessages blob,
request text,
PRIMARY KEY ((time_s), time_ms, uuid)) -- Partition on time_s
-- Because queries will be "from current time into the past"
WITH CLUSTERING ORDER BY (time_ms DESC)
CREATE INDEX oplog_remoteaddr ON operation_log (remoteaddr);
...
(secondary indices on host, username, accountno, op_type);
...
CREATE TABLE uuid_lookup (
uuid uuid,
time_s bigint,
time_ms int,
PRIMARY KEY (uuid));
I want to use OrderedPartitioner which will spread data all over the cluster by its time_s (seconds). It must also scale to dozens of concurrent data writers as more application log aggregators are added to the application cluster (uniqueness and consistency is guaranteed by the uuid part of the PK).
Analysts will have to look at this data by performing these sorts of queries:
range query over time_s, filtering on any of the data fields (SELECT * FROM operation_log WHERE time_s < $time1 AND time_s > $time2 AND $filters),
pagination query from the results of the previous one (SELECT * FROM operation_log WHERE time_s < $time1 AND time_s > $time2 AND token(uuid) < token($uuid) AND $filters),
count messages filtered by any data fields within a time range (SELECT COUNT(*) FROM operation_log WHERE time_s < $time1 AND time_s > $time2 AND $filters),
group all data by any of the data fields within some range (will be performed by application code),
request dozens or hundreds of log messages by their uuid (hundreds of SELECT * FROM uuid_lookup WHERE uuid IN [00000005-3ecd-0c92-fae3-1f48, ...]).
My questions are:
Is this a sane data model?
Is using OrderedPartitioner the way to go here?
Does provisioning a few columns for potential filter make sense? Or is adding a column every once in a while cheap enough to run on a Cassandra cluster with some reserved headroom?
Is there anything that prevents it from scaling to 100000 inserted rows per second from hundreds of aggregators and storing a petabyte or two of queryable data, provided that the number of concurrent queryists will never exceed 10?
This data model is close to a sane model, with several important modifications/caveats:
Do not use ByteOrderedPartitioner, especially not with time as the key. Doing this will result in severe hotspots on your cluster, as you'll do most of your reads and all your writes to only part of the data range (and therefore a small subset of your cluster). Use Murmur3Partitioner.
To enable your range queries, you'll need a sentinel key--a key you can know in advance. For log data, this is probably a time bucket + some other known value that's not time-based (so your writes are evenly distributed).
Your indices might be ok, but it's hard to tell without knowing your data. Make sure your values are low in cardinality, or the index won't scale well.
Make sure any potential filter columns adhere to the low cardinality rule. Better yet, if you don't need real-time queries, use Spark to do your analysis. You should create new columns as needed, as this is not a big deal. Cassandra stores them sparsely. Better yet, if you use Spark, you can store these values in a map.
If you follow these guidelines, you can scale as big as you want. If not, you will have very poor performance and will likely get performance equivalent to a single node.