How does return statement work in Haskell? [duplicate] - haskell

This question already has answers here:
What's so special about 'return' keyword
(3 answers)
Closed 5 years ago.
Consider these functions
f1 :: Maybe Int
f1 = return 1
f2 :: [Int]
f2 = return 1
Both have the same statement return 1. But the results are different. f1 gives value Just 1 and f2 gives value [1]
Looks like Haskell invokes two different versions of return based on return type. I like to know more about this kind of function invocation. Is there a name for this feature in programming languages?

This is a long meandering answer!
As you've probably seen from the comments and Thomas's excellent (but very technical) answer You've asked a very hard question. Well done!
Rather than try to explain the technical answer I've tried to give you a broad overview of what Haskell does behind the scenes without diving into technical detail. Hopefully it will help you to get a big picture view of what's going on.
return is an example of type inference.
Most modern languages have some notion of polymorphism. For example var x = 1 + 1 will set x equal to 2. In a statically typed language 2 will usually be an int. If you say var y = 1.0 + 1.0 then y will be a float. The operator + (which is just a function with a special syntax)
Most imperative languages, especially object oriented languages, can only do type inference one way. Every variable has a fixed type. When you call a function it looks at the types of the argument and chooses a version of that function that fits the types (or complains if it can't find one).
When you assign the result of a function to a variable the variable already has a type and if it doesn't agree with the type of the return value you get an error.
So in an imperative language the "flow" of type deduction follows time in your program Deduce the type of a variable, do something with it and deduce the type of the result. In a dynamically typed language (such as Python or javascript) the type of a variable is not assigned until the value of the variable is computed (which is why there don't seem to be types). In a statically typed language the types are worked out ahead of time (by the compiler) but the logic is the same. The compiler works out what the types of variables are going to be, but it does so by following the logic of the program in the same way as the program runs.
In Haskell the type inference also follows the logic of the program. Being Haskell it does so in a very mathematically pure way (called System F). The language of types (that is the rules by which types are deduced) are similar to Haskell itself.
Now remember Haskell is a lazy language. It doesn't work out the value of anything until it needs it. That's why it makes sense in Haskell to have infinite data structures. It never occurs to Haskell that a data structure is infinite because it doesn't bother to work it out until it needs to.
Now all that lazy magic happens at the type level too. In the same way that Haskell doesn't work out what the value of an expression is until it really needs to, Haskell doesn't work out what the type of an expression is until it really needs to.
Consider this function
func (x : y : rest) = (x,y) : func rest
func _ = []
If you ask Haskell for the type of this function it has a look at the definition, sees [] and : and deduces that it's working with lists. But it never needs to look at the types of x and y, it just knows that they have to be the same because they end up in the same list. So it deduces the type of the function as [a] -> [a] where a is a type that it hasn't bothered to work out yet.
So far no magic. But it's useful to notice the difference between this idea and how it would be done in an OO language. Haskell doesn't convert the arguments to Object, do it's thing and then convert back. Haskell just hasn't been asked explicitly what the type of the list is. So it doesn't care.
Now try typing the following into ghci
maxBound - length ""
maxBound : "Hello"
Now what just happened !? minBound bust be a Char because I put it on the front of a string and it must be an integer because I added it to 0 and got a number. Plus the two values are clearly very different.
So what is the type of minBound? Let's ask ghci!
:type minBound
minBound :: Bounded a => a
AAargh! what does that mean? Basically it means that it hasn't bothered to work out exactly what a is, but is has to be Bounded if you type :info Bounded you get three useful lines
class Bounded a where
minBound :: a
maxBound :: a
and a lot of less useful lines
So if a is Bounded there are values minBound and maxBound of type a.
In fact under the hood Bounded is just a value, it's "type" is a record with fields minBound and maxBound. Because it's a value Haskell doesn't look at it until it really needs to.
So I appear to have meandered somewhere in the region of the answer to your question. Before we move onto return (which you may have noticed from the comments is a wonderfully complex beast.) let's look at read.
ghci again
read "42" + 7
read "'H'" : "ello"
length (read "[1,2,3]")
and hopefully you won't be too surprised to find that there are definitions
read :: Read a => String -> a
class Read where
read :: String -> a
so Read a is just a record containing a single value which is a function String -> a. Its very tempting to assume that there is one read function which looks at a string, works out what type is contained in the string and returns that type. But it does the opposite. It completely ignores the string until it's needed. When the value is needed, Haskell first works out what type it's expecting, once it's done that it goes and gets the appropriate version of the read function and combines it with the string.
now consider something slightly more complex
readList :: Read a => [String] -> a
readList strs = map read strs
under the hood readList actually takes two arguments
readList' (Read a) -> [String] -> [a]
readList' {read = f} strs = map f strs
Again as Haskell is lazy it only bothers looking at the arguments when it's needs to find out the return value, at that point it knows what a is, so the compiler can go and fine the right version of Read. Until then it doesn't care.
Hopefully that's given you a bit of an idea of what's happening and why Haskell can "overload" on the return type. But it's important to remember it's not overloading in the conventional sense. Every function has only one definition. It's just that one of the arguments is a bag of functions. read_str doesn't ever know what types it's dealing with. It just knows it gets a function String -> a and some Strings, to do the application it just passes the arguments to map. map in turn doesn't even know it gets strings. When you get deeper into Haskell it becomes very important that functions don't know very much about the types they're dealing with.
Now let's look at return.
Remember how I said that the type system in Haskell was very similar to Haskell itself. Remember that in Haskell functions are just ordinary values.
Does this mean I can have a type that takes a type as an argument and returns another type? Of course it does!
You've seen some type functions Maybe takes a type a and returns another type which can either be Just a or Nothing. [] takes a type a and returns a list of as. Type functions in Haskell are usually containers. For example I could define a type function BinaryTree which stores a load of a's in a tree like structure. There are of course lots of much stranger ones.
So, if these type functions are similar to ordinary types I can have a typeclass that contains type functions. One such typeclass is Monad
class Monad m where
return a -> m a
(>>=) m a (a -> m b) -> m b
so here m is some type function. If I want to define Monad for m I need to define return and the scary looking operator below it (which is called bind)
As others have pointed out the return is a really misleading name for a fairly boring function. The team that designed Haskell have since realised their mistake and they're genuinely sorry about it. return is just an ordinary function that takes an argument and returns a Monad with that type in it. (You never asked what a Monad actually is so I'm not going to tell you)
Let's define Monad for m = Maybe!
First I need to define return. What should return x be? Remember I'm only allowed to define the function once, so I can't look at x because I don't know what type it is. I could always return Nothing, but that seems a waste of a perfectly good function. Let's define return x = Just x because that's literally the only other thing I can do.
What about the scary bind thing? what can we say about x >>= f? well x is a Maybe a of some unknown type a and f is a function that takes an a and returns a Maybe b. Somehow I need to combine these to get a Maybe b`
So I need to define Nothing >== f. I can't call f because it needs an argument of type a and I don't have a value of type a I don't even know what 'a' is. I've only got one choice which is to define
Nothing >== f = Nothing
What about Just x >>= f? Well I know x is of type a and f takes a as an argument, so I can set y = f a and deduce that y is of type b. Now I need to make a Maybe b and I've got a b so ...
Just x >>= f = Just (f x)
So I've got a Monad! what if m is List? well I can follow a similar sort of logic and define
return x = [x]
[] >>= f = []
(x : xs) >>= a = f x ++ (xs >>= f)
Hooray another Monad! It's a nice exercise to go through the steps and convince yourself that there's no other sensible way of defining this.
So what happens when I call return 1?
Nothing!
Haskell's Lazy remember. The thunk return 1 (technical term) just sits there until someone needs the value. As soon as Haskell needs the value it know what type the value should be. In particular it can deduce that m is List. Now that it knows that Haskell can find the instance of Monad for List. As soon as it does that it has access to the correct version of return.
So finally Haskell is ready To call return, which in this case returns [1]!

The return function is from the Monad class:
class Applicative m => Monad (m :: * -> *) where
...
return :: a -> m a
So return takes any value of type a and results in a value of type m a. The monad, m, as you've observed is polymorphic using the Haskell type class Monad for ad hoc polymorphism.
At this point you probably realize return is not an good, intuitive, name. It's not even a built in function or a statement like in many other languages. In fact a better-named and identically-operating function exists - pure. In almost all cases return = pure.
That is, the function return is the same as the function pure (from the Applicative class) - I often think to myself "this monadic value is purely the underlying a" and I try to use pure instead of return if there isn't already a convention in the codebase.
You can use return (or pure) for any type that is a class of Monad. This includes the Maybe monad to get a value of type Maybe a:
instance Monad Maybe where
...
return = pure -- which is from Applicative
...
instance Applicative Maybe where
pure = Just
Or for the list monad to get a value of [a]:
instance Applicative [] where
{-# INLINE pure #-}
pure x = [x]
Or, as a more complex example, Aeson's parse monad to get a value of type Parser a:
instance Applicative Parser where
pure a = Parser $ \_path _kf ks -> ks a

Related

How do we know the output `a` has the same value as input `a` in the type signature (a,b) -> a [duplicate]

New to Haskell so sorry if this is very basic
This example is taken from "Real World Haskell" -
ghci> :type fst
fst :: (a, b) -> a
They show the type of the fst function and then follow it with this paragraph...
"The result type of fst is a. We've already mentioned that parametric polymorphism makes the real type inaccessible: fst doesn't have enough information to construct a value of type a, nor can it turn an a into a b. So the only possible valid behaviour (omitting infinite loops or crashes) it can have is to return the first element of the pair."
I feel like I am missing the fundamental point of the paragraph, and perhaps something important about Haskell. Why couldn't the fst function return type b? Why couldn't it take the tuple as a param, but simply return an Int ( or any other type that is NOT a)? I don't understand why it MUST return type a?
Thanks
If it did any of those things, its type would change. What the quote is saying is that, given that we know fst is of type (a, b) -> a, we can make those deductions about it. If it had a different type, we would not be able to do so.
For instance, see that
snd :: (a, b) -> a
snd (x, y) = y
does not type-check, and so we know a value of type (a, b) -> a cannot behave like snd.
Parametricity is basically the fact that a polymorphic function of a certain type must obey certain laws by construction — i.e., there is no well-typed expression of that type that does not obey them. So, for it to be possible to prove things about fst with it, we must first know fst's type.
Note especially the word polymorphism there: we can't do the same kind of deductions about non-polymorphic types. For instance,
myFst :: (Int, String) -> Int
myFst (a, b) = a
type-checks, but so does
myFst :: (Int, String) -> Int
myFst (a, b) = 42
and even
myFst :: (Int, String) -> Int
myFst (a, b) = length b
Parametricity relies crucially on the fact that a polymorphic function can't "look" at the types it is called with. So the only value of type a that fst knows about is the one it's given: the first element of the tuple.
The point is that once you have that type, the implementation options are greatly limited. If you returned an Int, then your type would be (a,b) -> Int. Since a could be anything, we can't gin one up out of thin air in the implementation without resorting to undefined, and so must return the one given to us by the caller.
You should read the Theorems for Free article.
Let's try to add some more hand-waving to that already given by Real World Haskell. Lets try to convince ourselves that given that we have a function fst with type (a,b) -> a the only total function it can be is the following one:
fst (x,y) = x
First of all, we cannot return anything other then a value of type a, that is in the premise that fst has type (a,b) -> a, so we cannot have fst (x,y) = y or fst (x,y) = 1 because that does not have the correct type.
Now, as RWH says, if I give fst an (Int,Int), fst doesn't know these are Ints, furthermore, a or b are not required to belong to any type class so fst has no available values or functions associated with a or b.
So fst only knows about the a value and the b value that I give it and I can't turn b into an a (It can't make a b -> a function) so it must return the given a value.
This isn't actually just magical hand waving, one can actually deduce what possible expressions there are of a given polymorphic type. There is actually a program called djinn that does exactly that.
The point here is that both a and b are type variables (that might be the same, but that's not needed). Anyway, since for a given tuple of two elements, fst returns always the first element, the returned type must be always the same as the type for the first element.
The fundamental thing you're probably missing is this:
In most programming languages, if you say "this function returns any type", it means that the function can decide what type of value it actually returns.
In Haskell, if you say "this function returns any type", it means that the caller gets to decide what type that should be. (!)
So if I you write foo :: Int -> x, it can't just return a String, because I might not ask it for a String. I might ask for a Customer, or a ThreadId, or anything.
Obviously, there's no way that foo can know how to create a value of every possible type, even types that don't exist yet. In short, it is impossible to write foo. Everything you try will give you type errors, and won't compile.
(Caveat: There is a way to do it. foo could loop forever, or throw an exception. But it cannot return a valid value.)
There's no way for a function to be able to create values of any possible type. But it's perfectly possible for a function to move data around without caring what type it is. Therefore, if you see a function that accepts any kind of data, the only thing it can be doing with it is to move it around.
Alternatively, if the type has to belong to a specific class, then the function can use the methods of that class on it. (Could. It doesn't have to, but it can if it wants to.)
Fundamentally, this is why you can actually tell what a function does just by looking at its type signature. The type signature tells you what the function "knows" about the data it's going to be given, and hence what possible operations it might perform. This is why searching for a Haskell function by its type signature is so damned useful.
You've heard the expression "in Haskell, if it compiles, it usually works right"? Well, this is why. ;-)

How do we overcome the compile time and runtime gap when programming in a Dependently Typed Language?

I'm told that in dependent type system, "types" and "values" is mixed, and we can treat both of them as "terms" instead.
But there is something I can't understand: in a strongly typed programming language without Dependent Type (like Haskell), Types is decided (infered or checked) at compile time, but values is decided (computed or inputed) at runtime.
I think there must be a gap between these two stages. Just think that if a value is interactively read from STDIN, how can we reference this value in a type which must be decided AOT?
e.g. There is a natural number n and a list of natural number xs (which contains n elements) which I need to read from STDIN, how can I put them into a data structure Vect n Nat?
Suppose we input n :: Int at runtime from STDIN. We then read n strings, and store them into vn :: Vect n String (pretend for the moment this can be done).
Similarly, we can read m :: Int and vm :: Vect m String. Finally, we concatenate the two vectors: vn ++ vm (simplifying a bit here). This can be type checked, and will have type Vect (n+m) String.
Now it is true that the type checker runs at compile time, before the values n,m are known, and also before vn,vm are known. But this does not matter: we can still reason symbolically on the unknowns n,m and argue that vn ++ vm has that type, involving n+m, even if we do not yet know what n+m actually is.
It is not that different from doing math, where we manipulate symbolic expressions involving unknown variables according to some rules, even if we do not know the values of the variables. We don't need to know what number is n to see that n+n = 2*n.
Similarly, the type checker can type check
-- pseudocode
readNStrings :: (n :: Int) -> IO (Vect n String)
readNStrings O = return Vect.empty
readNStrings (S p) = do
s <- getLine
vp <- readNStrings p
return (Vect.cons s vp)
(Well, actually some more help from the programmer could be needed to typecheck this, since it involves dependent matching and recursion. But I'll neglect this.)
Importantly, the type checker can check that without knowing what n is.
Note that the same issue actually already arises with polymorphic functions.
fst :: forall a b. (a, b) -> a
fst (x, y) = x
test1 = fst # Int # Float (2, 3.5)
test2 = fst # String # Bool ("hi!", True)
...
One might wonder "how can the typechecker check fst without knowing what types a and b will be at runtime?". Again, by reasoning symbolically.
With type arguments this is arguably more obvious since we usually run the programs after type erasure, unlike value parameters like our n :: Int above, which can not be erased. Still, there is some similarity between universally quantifying over types or over Int.
It seems to me that there are two questions here:
Given that some values are unknown during compile-time (e.g., values read from STDIN), how can we make use of them in types? (Note that chi has already given an excellent answer to this.)
Some operations (e.g., getLine) seem to make absolutely no sense at compile-time; how could we possibly talk about them in types?
The answer to (1), as chi has said, is symbolic or abstract reasoning. You can read in a number n, and then have a procedure that builds a Vect n Nat by reading from the command line n times, making use of arithmetic properties such as the fact that 1+(n-1) = n for nonzero natural numbers.
The answer to (2) is a bit more subtle. Naively, you might want to say "this function returns a vector of length n, where n is read from the command line". There are two types you might try to give this (apologies if I'm getting Haskell notation wrong)
unsafePerformIO (do n <- getLine; return (IO (Vect (read n :: Int) Nat)))
or (in pseudo-Coq notation, since I'm not sure what Haskell's notation for existential types is)
IO (exists n, Vect n Nat)
These two types can actually both be made sense of, and say different things. The first type, to me, says "at compile time, read n from the command line, and return a function which, at runtime, gives a vector of length n by performing IO". The second type says "at runtime, perform IO to get a natural number n and a vector of length n".
The way I like looking at this is that all side effects (other than, perhaps, non-termination) are monad transformers, and there is only one monad: the "real-world" monad. Monad transformers work just as well at the type level as at the term level; the one thing which is special is run :: M a -> a which executes the monad (or stack of monad transformers) in the "real world". There are two points in time at which you can invoke run: one is at compile time, where you invoke any instance of run which shows up at the type level. Another is at runtime, where you invoke any instance of run which shows up at the value level. Note that run only makes sense if you specify an evaluation order; if your language does not specify whether it is call-by-value or call-by-name (or call-by-push-value or call-by-need or call-by-something-else), you can get incoherencies when you try to compute a type.

Can I declare a NULL value in Haskell?

Just curious, seems when declaring a name, we always specify some valid values, like let a = 3. Question is, in imperative languages include c/java there's always a keyword of "null". Does Haskell has similar thing? When could a function object be null?
There is a “null” value that you can use for variables of any type. It's called ⟂ (pronounced bottom). We don't need a keyword to produce bottom values; actually ⟂ is the value of any computation which doesn't terminate. For instance,
bottom = let x = x in x -- or simply `bottom = bottom`
will infinitely loop. It's obviously not a good idea to do this deliberately, however you can use undefined as a “standard bottom value”. It's perhaps the closest thing Haskell has to Java's null keyword.
But you definitely shouldn't/can't use this for most of the applications where Java programmers would grab for null.
Since everything in Haskell is immutable, a value that's undefined will always stay undefined. It's not possible to use this as a “hold on a second, I'll define it later” indication†.
It's not possible to check whether a value is bottom or not. For rather deep theoretical reasons, in fact. So you can't use this for values that may or may not be defined.
And you know what? It's really good that Haskell does't allow this! In Java, you constantly need to be wary that values might be null. In Haskell, if a value is bottom than something is plain broken, but this will never be part of intended behaviour / something you might need to check for. If for some value it's intended that it might not be defined, then you must always make this explicit by wrapping the type in a Maybe. By doing this, you make sure that anybody trying to use the value must first check whether it's there. Not possible to forget this and run into a null-reference exception at runtime!
And because Haskell is so good at handling variant types, checking the contents of a Maybe-wrapped value is really not too cumbersome. You can just do it explicitly with pattern matching,
quun :: Int -> String
quun i = case computationWhichMayFail i of
Just j -> show j
Nothing -> "blearg, failed"
computationWhichMayFail :: Int -> Maybe Int
or you can use the fact that Maybe is a functor. Indeed it is an instance of almost every specific functor class: Functor, Applicative, Alternative, Foldable, Traversable, Monad, MonadPlus. It also lifts semigroups to monoids.
Dᴏɴ'ᴛ Pᴀɴɪᴄ now,
you don't need to know what the heck these things are. But when you've learned what they do, you will be able to write very concise code that automagically handles missing values always in the right way, with zero risk of missing a check.
†Because Haskell is lazy, you generally don't need to defer any calculations to be done later. The compiler will automatically see to it that the computation is done when it's necessary, and no sooner.
There is no null in Haskell. What you want is the Maybe monad.
data Maybe a
= Just a
| Nothing
Nothing refers to classic null and Just contains a value.
You can then pattern match against it:
foo Nothing = Nothing
foo (Just a) = Just (a * 10)
Or with case syntax:
let m = Just 10
in case m of
Just v -> print v
Nothing -> putStrLn "Sorry, there's no value. :("
Or use the supperior functionality provided by the typeclass instances for Functor, Applicative, Alternative, Monad, MonadPlus and Foldable.
This could then look like this:
foo :: Maybe Int -> Maybe Int -> Maybe Int
foo x y = do
a <- x
b <- y
return $ a + b
You can even use the more general signature:
foo :: (Monad m, Num a) => m a -> m a -> m a
Which makes this function work for ANY data type that is capable of the functionality provided by Monad. So you can use foo with (Num a) => Maybe a, (Num a) => [a], (Num a) => Either e a and so on.
Haskell does not have "null". This is a design feature. It completely prevents any possibility of your code crashing due to a null-pointer exception.
If you look at code written in an imperative language, 99% of the code expects stuff to never be null, and will malfunction catastrophically if you give it null. But then 1% of the code does expect nulls, and uses this feature to specify optional arguments or whatever. But you can't easily tell, by looking at the code, which parts are expecting nulls as legal arguments, and which parts aren't. Hopefully it's documented — but don't hold your breath!
In Haskell, there is no null. If that argument is declared as Customer, then there must be an actual, real Customer there. You can't just pass in a null (intentionally or by mistake). So the 99% of the code that is expecting a real Customer will always work.
But what about the other 1%? Well, for that we have Maybe. But it's an explicit thing; you have to explicitly say "this value is optional". And you have to explicitly check when you use it. You cannot "forget" to check; it won't compile.
So yes, there is no "null", but there is Maybe which is kinda similar, but safer.
Not in Haskell (or in many other FP languages). If you have some expression of some type T, its evaluation will give a value of type T, with the following exceptions:
infinite recursion may make the program "loop forever" and failing to return anything
let f n = f (n+1) in f 0
runtime errors can abort the program early, e.g.:
division by zero, square root of negative, and other numerical errors
head [], fromJust Nothing, and other partial functions used on invalid inputs
explicit calls to undefined, error "message", or other exception-throwing primitives
Note that even if the above cases might be regarded as "special" values called "bottoms" (the name comes from domain theory), you can not test against these values at runtime, in general. So, these are not at all the same thing as Java's null. More precisely, you can't write things like
-- assume f :: Int -> Int
if (f 5) is a division-by-zero or infinite recursion
then 12
else 4
Some exceptional values can be caught in the IO monad, but forget about that -- exceptions in Haskell are not idiomatic, and roughly only used for IO errors.
If you want an exceptional value which can be tested at run-time, use the Maybe a type, as #bash0r already suggested. This type is similar to Scala's Option[A] or Java's not-so-much-used Optional<A>.
The value is having both a type T and type Maybe T is to be able to precisely identify which functions always succeed, and which ones can fail. In Haskell the following is frowned upon, for instance:
-- Finds a value in a list. Returns -1 if not present.
findIndex :: Eq a => [a] -> a -> Int
Instead this is preferred:
-- Finds a value in a list. Returns Nothing if not present.
findIndex :: Eq a => [a] -> a -> Maybe Int
The result of the latter is less convenient than the one of the former, since the Int must be unwrapped at every call. This is good, since in this way each user of the function is prevented to simply "ignore" the not-present case, and write buggy code.

Functions don't just have types: They ARE Types. And Kinds. And Sorts. Help put a blown mind back together

I was doing my usual "Read a chapter of LYAH before bed" routine, feeling like my brain was expanding with every code sample. At this point I was convinced that I understood the core awesomeness of Haskell, and now just had to understand the standard libraries and type classes so that I could start writing real software.
So I was reading the chapter about applicative functors when all of a sudden the book claimed that functions don't merely have types, they are types, and can be treated as such (For example, by making them instances of type classes). (->) is a type constructor like any other.
My mind was blown yet again, and I immediately jumped out of bed, booted up the computer, went to GHCi and discovered the following:
Prelude> :k (->)
(->) :: ?? -> ? -> *
What on earth does it mean?
If (->) is a type constructor, what are the value constructors? I can take a guess, but would have no idea how define it in traditional data (->) ... = ... | ... | ... format. It's easy enough to do this with any other type constructor: data Either a b = Left a | Right b. I suspect my inability to express it in this form is related to the extremly weird type signature.
What have I just stumbled upon? Higher kinded types have kind signatures like * -> * -> *. Come to think of it... (->) appears in kind signatures too! Does this mean that not only is it a type constructor, but also a kind constructor? Is this related to the question marks in the type signature?
I have read somewhere (wish I could find it again, Google fails me) about being able to extend type systems arbitrarily by going from Values, to Types of Values, to Kinds of Types, to Sorts of Kinds, to something else of Sorts, to something else of something elses, and so on forever. Is this reflected in the kind signature for (->)? Because I've also run into the notion of the Lambda cube and the calculus of constructions without taking the time to really investigate them, and if I remember correctly it is possible to define functions that take types and return types, take values and return values, take types and return values, and take values which return types.
If I had to take a guess at the type signature for a function which takes a value and returns a type, I would probably express it like this:
a -> ?
or possibly
a -> *
Although I see no fundamental immutable reason why the second example couldn't easily be interpreted as a function from a value of type a to a value of type *, where * is just a type synonym for string or something.
The first example better expresses a function whose type transcends a type signature in my mind: "a function which takes a value of type a and returns something which cannot be expressed as a type."
You touch so many interesting points in your question, so I am
afraid this is going to be a long answer :)
Kind of (->)
The kind of (->) is * -> * -> *, if we disregard the boxity GHC
inserts. But there is no circularity going on, the ->s in the
kind of (->) are kind arrows, not function arrows. Indeed, to
distinguish them kind arrows could be written as (=>), and then
the kind of (->) is * => * => *.
We can regard (->) as a type constructor, or maybe rather a type
operator. Similarly, (=>) could be seen as a kind operator, and
as you suggest in your question we need to go one 'level' up. We
return to this later in the section Beyond Kinds, but first:
How the situation looks in a dependently typed language
You ask how the type signature would look for a function that takes a
value and returns a type. This is impossible to do in Haskell:
functions cannot return types! You can simulate this behaviour using
type classes and type families, but let us for illustration change
language to the dependently typed language
Agda. This is a
language with similar syntax as Haskell where juggling types together
with values is second nature.
To have something to work with, we define a data type of natural
numbers, for convenience in unary representation as in
Peano Arithmetic.
Data types are written in
GADT style:
data Nat : Set where
Zero : Nat
Succ : Nat -> Nat
Set is equivalent to * in Haskell, the "type" of all (small) types,
such as Natural numbers. This tells us that the type of Nat is
Set, whereas in Haskell, Nat would not have a type, it would have
a kind, namely *. In Agda there are no kinds, but everything has
a type.
We can now write a function that takes a value and returns a type.
Below is a the function which takes a natural number n and a type,
and makes iterates the List constructor n applied to this
type. (In Agda, [a] is usually written List a)
listOfLists : Nat -> Set -> Set
listOfLists Zero a = a
listOfLists (Succ n) a = List (listOfLists n a)
Some examples:
listOfLists Zero Bool = Bool
listOfLists (Succ Zero) Bool = List Bool
listOfLists (Succ (Succ Zero)) Bool = List (List Bool)
We can now make a map function that operates on listsOfLists.
We need to take a natural number that is the number of iterations
of the list constructor. The base cases are when the number is
Zero, then listOfList is just the identity and we apply the function.
The other is the empty list, and the empty list is returned.
The step case is a bit move involving: we apply mapN to the head
of the list, but this has one layer less of nesting, and mapN
to the rest of the list.
mapN : {a b : Set} -> (a -> b) -> (n : Nat) ->
listOfLists n a -> listOfLists n b
mapN f Zero x = f x
mapN f (Succ n) [] = []
mapN f (Succ n) (x :: xs) = mapN f n x :: mapN f (Succ n) xs
In the type of mapN, the Nat argument is named n, so the rest of
the type can depend on it. So this is an example of a type that
depends on a value.
As a side note, there are also two other named variables here,
namely the first arguments, a and b, of type Set. Type
variables are implicitly universally quantified in Haskell, but
here we need to spell them out, and specify their type, namely
Set. The brackets are there to make them invisible in the
definition, as they are always inferable from the other arguments.
Set is abstract
You ask what the constructors of (->) are. One thing to point out
is that Set (as well as * in Haskell) is abstract: you cannot
pattern match on it. So this is illegal Agda:
cheating : Set -> Bool
cheating Nat = True
cheating _ = False
Again, you can simulate pattern matching on types constructors in
Haskell using type families, one canoical example is given on
Brent Yorgey's blog.
Can we define -> in the Agda? Since we can return types from
functions, we can define an own version of -> as follows:
_=>_ : Set -> Set -> Set
a => b = a -> b
(infix operators are written _=>_ rather than (=>)) This
definition has very little content, and is very similar to doing a
type synonym in Haskell:
type Fun a b = a -> b
Beyond kinds: Turtles all the way down
As promised above, everything in Agda has a type, but then
the type of _=>_ must have a type! This touches your point
about sorts, which is, so to speak, one layer above Set (the kinds).
In Agda this is called Set1:
FunType : Set1
FunType = Set -> Set -> Set
And in fact, there is a whole hierarchy of them! Set is the type of
"small" types: data types in haskell. But then we have Set1,
Set2, Set3, and so on. Set1 is the type of types which mentions
Set. This hierarchy is to avoid inconsistencies such as Girard's
paradox.
As noticed in your question, -> is used for types and kinds in
Haskell, and the same notation is used for function space at all
levels in Agda. This must be regarded as a built in type operator,
and the constructors are lambda abstraction (or function
definitions). This hierarchy of types is similar to the setting in
System F omega, and more
information can be found in the later chapters of
Pierce's Types and Programming Languages.
Pure type systems
In Agda, types can depend on values, and functions can return types,
as illustrated above, and we also had an hierarchy of
types. Systematic investigation of different systems of the lambda
calculi is investigated in more detail in Pure Type Systems. A good
reference is
Lambda Calculi with Types by Barendregt,
where PTS are introduced on page 96, and many examples on page 99 and onwards.
You can also read more about the lambda cube there.
Firstly, the ?? -> ? -> * kind is a GHC-specific extension. The ? and ?? are just there to deal with unboxed types, which behave differently from just * (which has to be boxed, as far as I know). So ?? can be any normal type or an unboxed type (e.g. Int#); ? can be either of those or an unboxed tuple. There is more information here: Haskell Weird Kinds: Kind of (->) is ?? -> ? -> *
I think a function can't return an unboxed type because functions are lazy. Since a lazy value is either a value or a thunk, it has to be boxed. Boxed just means it is a pointer rather than just a value: it's like Integer() vs int in Java.
Since you are probably not going to be using unboxed types in LYAH-level code, you can imagine that the kind of -> is just * -> * -> *.
Since the ? and ?? are basically just more general version of *, they do not have anything to do with sorts or anything like that.
However, since -> is just a type constructor, you can actually partially apply it; for example, (->) e is an instance of Functor and Monad. Figuring out how to write these instances is a good mind-stretching exercise.
As far as value constructors go, they would have to just be lambdas (\ x ->) or function declarations. Since functions are so fundamental to the language, they get their own syntax.

determining function behavior from the type of the function

New to Haskell so sorry if this is very basic
This example is taken from "Real World Haskell" -
ghci> :type fst
fst :: (a, b) -> a
They show the type of the fst function and then follow it with this paragraph...
"The result type of fst is a. We've already mentioned that parametric polymorphism makes the real type inaccessible: fst doesn't have enough information to construct a value of type a, nor can it turn an a into a b. So the only possible valid behaviour (omitting infinite loops or crashes) it can have is to return the first element of the pair."
I feel like I am missing the fundamental point of the paragraph, and perhaps something important about Haskell. Why couldn't the fst function return type b? Why couldn't it take the tuple as a param, but simply return an Int ( or any other type that is NOT a)? I don't understand why it MUST return type a?
Thanks
If it did any of those things, its type would change. What the quote is saying is that, given that we know fst is of type (a, b) -> a, we can make those deductions about it. If it had a different type, we would not be able to do so.
For instance, see that
snd :: (a, b) -> a
snd (x, y) = y
does not type-check, and so we know a value of type (a, b) -> a cannot behave like snd.
Parametricity is basically the fact that a polymorphic function of a certain type must obey certain laws by construction — i.e., there is no well-typed expression of that type that does not obey them. So, for it to be possible to prove things about fst with it, we must first know fst's type.
Note especially the word polymorphism there: we can't do the same kind of deductions about non-polymorphic types. For instance,
myFst :: (Int, String) -> Int
myFst (a, b) = a
type-checks, but so does
myFst :: (Int, String) -> Int
myFst (a, b) = 42
and even
myFst :: (Int, String) -> Int
myFst (a, b) = length b
Parametricity relies crucially on the fact that a polymorphic function can't "look" at the types it is called with. So the only value of type a that fst knows about is the one it's given: the first element of the tuple.
The point is that once you have that type, the implementation options are greatly limited. If you returned an Int, then your type would be (a,b) -> Int. Since a could be anything, we can't gin one up out of thin air in the implementation without resorting to undefined, and so must return the one given to us by the caller.
You should read the Theorems for Free article.
Let's try to add some more hand-waving to that already given by Real World Haskell. Lets try to convince ourselves that given that we have a function fst with type (a,b) -> a the only total function it can be is the following one:
fst (x,y) = x
First of all, we cannot return anything other then a value of type a, that is in the premise that fst has type (a,b) -> a, so we cannot have fst (x,y) = y or fst (x,y) = 1 because that does not have the correct type.
Now, as RWH says, if I give fst an (Int,Int), fst doesn't know these are Ints, furthermore, a or b are not required to belong to any type class so fst has no available values or functions associated with a or b.
So fst only knows about the a value and the b value that I give it and I can't turn b into an a (It can't make a b -> a function) so it must return the given a value.
This isn't actually just magical hand waving, one can actually deduce what possible expressions there are of a given polymorphic type. There is actually a program called djinn that does exactly that.
The point here is that both a and b are type variables (that might be the same, but that's not needed). Anyway, since for a given tuple of two elements, fst returns always the first element, the returned type must be always the same as the type for the first element.
The fundamental thing you're probably missing is this:
In most programming languages, if you say "this function returns any type", it means that the function can decide what type of value it actually returns.
In Haskell, if you say "this function returns any type", it means that the caller gets to decide what type that should be. (!)
So if I you write foo :: Int -> x, it can't just return a String, because I might not ask it for a String. I might ask for a Customer, or a ThreadId, or anything.
Obviously, there's no way that foo can know how to create a value of every possible type, even types that don't exist yet. In short, it is impossible to write foo. Everything you try will give you type errors, and won't compile.
(Caveat: There is a way to do it. foo could loop forever, or throw an exception. But it cannot return a valid value.)
There's no way for a function to be able to create values of any possible type. But it's perfectly possible for a function to move data around without caring what type it is. Therefore, if you see a function that accepts any kind of data, the only thing it can be doing with it is to move it around.
Alternatively, if the type has to belong to a specific class, then the function can use the methods of that class on it. (Could. It doesn't have to, but it can if it wants to.)
Fundamentally, this is why you can actually tell what a function does just by looking at its type signature. The type signature tells you what the function "knows" about the data it's going to be given, and hence what possible operations it might perform. This is why searching for a Haskell function by its type signature is so damned useful.
You've heard the expression "in Haskell, if it compiles, it usually works right"? Well, this is why. ;-)

Resources