Using Multithreading for Inference in Tensorflow with OpenCV - multithreading

I know using Multithreading is usefull training a DNN with Tensorflow.
But does it make any sense to use it for inference? For example if you are using Googles Object Detection API for realtime object detection in video streams?
And if Yes, how is it implemented?
I created a github repo (https://github.com/GustavZ/realtime_object_detection) that allows easy Real Time Object Detection but i am not satisfied with the generated FPS, So i thougth about using Multithreading to speed it up.
Has anybody Experience with this or could help me implement it in my code?
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Thu Dec 21 12:01:40 2017
#author: GustavZ
"""
import numpy as np
import os
import six.moves.urllib as urllib
import tarfile
import tensorflow as tf
import cv2
# Protobuf Compilation (once necessary)
os.system('protoc object_detection/protos/*.proto --python_out=.')
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
from stuff.helper import FPS2
# Define Video Input
# Must be OpenCV readable
# 0 = Default Camera
video_input = 0
width = 640
height = 480
fps_interval = 3
# Model preparation
# What model to download.
MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17'
MODEL_FILE = MODEL_NAME + '.tar.gz'
DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/'
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = 'models/' + MODEL_NAME + '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
LABEL_MAP = 'mscoco_label_map.pbtxt'
PATH_TO_LABELS = 'object_detection/data/' + LABEL_MAP
NUM_CLASSES = 90
# Download Model
if not os.path.isfile(PATH_TO_CKPT):
print('Model not found. Downloading it now.')
opener = urllib.request.URLopener()
opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE)
tar_file = tarfile.open(MODEL_FILE)
for file in tar_file.getmembers():
file_name = os.path.basename(file.name)
if 'frozen_inference_graph.pb' in file_name:
tar_file.extract(file, os.getcwd())
os.remove('../' + MODEL_FILE)
else:
print('Model found. Proceed.')
# Load a (frozen) Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Start Video Stream
video_stream = cv2.VideoCapture(video_input)
video_stream.set(cv2.CAP_PROP_FRAME_WIDTH, width)
video_stream.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
# Detection
print ("Press 'q' to Exit")
with detection_graph.as_default():
with tf.Session(graph=detection_graph) as sess: # config=tf.ConfigProto(log_device_placement=True)
# Definite input and output Tensors for detection_graph
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# fps calculation
fps = FPS2(fps_interval).start()
while video_stream.isOpened():
ret_val,image_np = video_stream.read()
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
(boxes, scores, classes, num) = sess.run(
[detection_boxes, detection_scores, detection_classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
np.squeeze(boxes),
np.squeeze(classes).astype(np.int32),
np.squeeze(scores),
category_index,
use_normalized_coordinates=True,
line_thickness=8)
cv2.imshow('object_detection', image_np)
# Exit Option
if cv2.waitKey(1) & 0xFF == ord('q'):
break
fps.update()
# End everything
video_stream.release()
cv2.destroyAllWindows()
fps.stop()
print('[INFO] elapsed time (total): {:.2f}'.format(fps.elapsed()))
print('[INFO] approx. FPS: {:.2f}'.format(fps.fps()))

It makes sense only if you run it on a device where your computing capacities are limited.
Basically what you would do is to run in different threads the image processing and the inference.
The result would be a smooth video display, and your inference would lag behind without impacting your display framerate.
You can see on this file an example (just a draft, not tested yet) about how the multi threading would look like.
I am loading my model and starting my session, then looping over the video captured, feeding my prediction queue if I have capacities to infer it.

Related

How to crop segmented objects from an RCNN?

I'm trying to crop segmented objects outputed by an MASK RCNN the only problem is that when i do the cropping i get the segments with mask colors and not with their original colors.
Here's the outputed image with the segments :
and here's one segment (we have 17 segments in this image ) :
as you can see , we have the segment with the mask color and not the original color.
here's the code that i'm using :
from mrcnn.config import Config
from mrcnn import model as modellib
from mrcnn import visualize
import numpy as np
import colorsys
import argparse
import imutils
import random
import cv2
import os
import matplotlib.image as mpimg
import cv2
import matplotlib.pyplot as plt
import numpy as np
# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-w", "--weights", required=True,
help="path to Mask R-CNN model weights pre-trained on COCO")
ap.add_argument("-l", "--labels", required=True,
help="path to class labels file")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
help="minimum probability to filter weak detections")
ap.add_argument("-i", "--image", required=True,
help="path to input image to apply Mask R-CNN to")
args = vars(ap.parse_args())
# load the class label names from disk, one label per line
CLASS_NAMES = open(args["labels"]).read().strip().split("\n")
# generate random (but visually distinct) colors for each class label
# (thanks to Matterport Mask R-CNN for the method!)
hsv = [(i / len(CLASS_NAMES), 1, 1.0) for i in range(len(CLASS_NAMES))]
COLORS = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv))
random.seed(42)
random.shuffle(COLORS)
class SimpleConfig(Config):
# give the configuration a recognizable name
NAME = "fashion"
# set the number of GPUs to use along with the number of images
# per GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
NUM_CLASSES = 1 + 3
# Skip detections with < 90% confidence
DETECTION_MIN_CONFIDENCE = args["confidence"]
# initialize the inference configuration
config = SimpleConfig()
# initialize the Mask R-CNN model for inference and then load the
# weights
print("[INFO] loading Mask R-CNN model...")
model = modellib.MaskRCNN(mode="inference", config=config,
model_dir=os.getcwd())
model.load_weights(args["weights"], by_name=True)
# load the input image, convert it from BGR to RGB channel
# ordering, and resize the image
# default value 512 form the width
image = cv2.imread(args["image"])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = imutils.resize(image, width=1150)
# perform a forward pass of the network to obtain the results
print("[INFO] making predictions with Mask R-CNN...")
r = model.detect([image], verbose=1)[0]
image = visualize.display_instances(image, r['rois'], r['masks'], r['class_ids'],
['BG', 'top', 'boots' , 'bag'], r['scores'],
title="")
# get and then save the segmented objects
i = 0
mask = r["masks"]
for i in range(mask.shape[2]):
image = cv2.imread(args["image"])
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = imutils.resize(image, width=1150)
for j in range(image.shape[2]):
image[:,:,j] = image[:,:,j] * mask[:,:,i]
filename = "Output/segment_%d.jpg"%i
cv2.imwrite(filename,image)
i+=1
Any Help on how to resolve this issue would be much appreciated , thank you.
I think you need to change this line line in visualize display_intance, and change facecolor from none to None.
I think it is creating random colors even if you don't specify it explicitly
I found the Error , as it has been suggested to me in Github , i had to remove the
`image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)`
Line, because my image was already converted to RGB.

Keras Image Preprocessing

My training images are downscaled versions of their associated HR image. Thus, the input and the output images aren't the same dimension. For now, I'm using a hand-crafted sample of 13 images, but eventually I would like to be able to use my 500-ish HR (high-resolution) images dataset. This dataset, however, does not have images of the same dimension, so I'm guessing I'll have to crop them in order to obtain a uniform dimension.
I currently have this code set up: it takes a bunch of 512x512x3 images and applies a few transformations to augment the data (flips). I thus obtain a basic set of 39 images in their HR form, and then I downscale them by a factor of 4, thus obtaining my trainset which consits of 39 images of dimension 128x128x3.
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.image as mpimg
import skimage
from skimage import transform
from constants import data_path
from constants import img_width
from constants import img_height
from model import setUpModel
def setUpImages():
train = []
finalTest = []
sample_amnt = 11
max_amnt = 13
# Extracting images (512x512)
for i in range(sample_amnt):
train.append(mpimg.imread(data_path + str(i) + '.jpg'))
for i in range(max_amnt-sample_amnt):
finalTest.append(mpimg.imread(data_path + str(i+sample_amnt) + '.jpg'))
# # TODO: https://keras.io/preprocessing/image/
# ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False,
# samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-06, rotation_range=0,
# width_shift_range=0.0, height_shift_range=0.0, brightness_range=None, shear_range=0.0,
# zoom_range=0.0, channel_shift_range=0.0, fill_mode='nearest', cval=0.0, horizontal_flip=False,
# vertical_flip=False, rescale=None, preprocessing_function=None, data_format=None,
# validation_split=0.0, dtype=None)
# Augmenting data
trainData = dataAugmentation(train)
testData = dataAugmentation(finalTest)
setUpData(trainData, testData)
def setUpData(trainData, testData):
# print(type(trainData)) # <class 'numpy.ndarray'>
# print(len(trainData)) # 64
# print(type(trainData[0])) # <class 'numpy.ndarray'>
# print(trainData[0].shape) # (1400, 1400, 3)
# print(trainData[len(trainData)//2-1].shape) # (1400, 1400, 3)
# print(trainData[len(trainData)//2].shape) # (350, 350, 3)
# print(trainData[len(trainData)-1].shape) # (350, 350, 3)
# TODO: substract mean of all images to all images
# Separating the training data
Y_train = trainData[:len(trainData)//2] # First half is the unaltered data
X_train = trainData[len(trainData)//2:] # Second half is the deteriorated data
# Separating the testing data
Y_test = testData[:len(testData)//2] # First half is the unaltered data
X_test = testData[len(testData)//2:] # Second half is the deteriorated data
# Adjusting shapes for Keras input # TODO: make into a function ?
X_train = np.array([x for x in X_train])
Y_train = np.array([x for x in Y_train])
Y_test = np.array([x for x in Y_test])
X_test = np.array([x for x in X_test])
# # Sanity check: display four images (2x HR/LR)
# plt.figure(figsize=(10, 10))
# for i in range(2):
# plt.subplot(2, 2, i + 1)
# plt.imshow(Y_train[i], cmap=plt.cm.binary)
# for i in range(2):
# plt.subplot(2, 2, i + 1 + 2)
# plt.imshow(X_train[i], cmap=plt.cm.binary)
# plt.show()
setUpModel(X_train, Y_train, X_test, Y_test)
# TODO: possibly remove once Keras Preprocessing is integrated?
def dataAugmentation(dataToAugment):
print("Starting to augment data")
arrayToFill = []
# faster computation with values between 0 and 1 ?
dataToAugment = np.divide(dataToAugment, 255.)
# TODO: switch from RGB channels to CbCrY
# # TODO: Try GrayScale
# trainingData = np.array(
# [(cv2.cvtColor(np.uint8(x * 255), cv2.COLOR_BGR2GRAY) / 255).reshape(350, 350, 1) for x in trainingData])
# validateData = np.array(
# [(cv2.cvtColor(np.uint8(x * 255), cv2.COLOR_BGR2GRAY) / 255).reshape(1400, 1400, 1) for x in validateData])
# adding the normal images (8)
for i in range(len(dataToAugment)):
arrayToFill.append(dataToAugment[i])
# vertical axis flip (-> 16)
for i in range(len(arrayToFill)):
arrayToFill.append(np.fliplr(arrayToFill[i]))
# horizontal axis flip (-> 32)
for i in range(len(arrayToFill)):
arrayToFill.append(np.flipud(arrayToFill[i]))
# downsizing by scale of 4 (-> 64 images of 128x128x3)
for i in range(len(arrayToFill)):
arrayToFill.append(skimage.transform.resize(
arrayToFill[i],
(img_width/4, img_height/4),
mode='reflect',
anti_aliasing=True))
# # Sanity check: display the images
# plt.figure(figsize=(10, 10))
# for i in range(64):
# plt.subplot(8, 8, i + 1)
# plt.imshow(arrayToFill[i], cmap=plt.cm.binary)
# plt.show()
return np.array(arrayToFill)
My question is: in my case, can I use the Preprocessing tool that Keras offers? I would ideally like to be able to input my varying sized images of high quality, crop them (not downsize them) to 512x512x3, and data augment them through flips and whatnot. Substracting the mean would also be part of what I'd like to achieve. That set would represent my validation set.
Reusing the validation set, I want to downscale by a factor of 4 all the images, and that would generate my training set.
Those two sets could then be split appropriately to obtain, ultimately, the famous X_train Y_train X_test Y_test.
I'm just hesitant about throwing out all the work I've done so far to preprocess my mini sample, but I'm thinking if it can all be done with a single built-in function, maybe I should give that a go.
This is my first ML project, hence me not understanding very well Keras, and the documentation isn't always the clearest. I'm thinking that the fact that I'm working with a X and Y that are different in size, maybe this function doesn't apply to my project.
Thank you! :)
Yes you can use keras preprocessing function. Below some snippets to help you...
def cropping_function(x):
...
return cropped_image
X_image_gen = ImageDataGenerator(preprocessing_function = cropping_function,
horizontal_flip = True,
vertical_flip=True)
X_train_flow = X_image_gen.flow(X_train, batch_size = 16, seed = 1)
Y_image_gen = ImageDataGenerator(horizontal_flip = True,
vertical_flip=True)
Y_train_flow = Y_image_gen.flow(y_train, batch_size = 16, seed = 1)
train_flow = zip(X_train_flow,Y_train_flow)
model.fit_generator(train_flow)
Christof Henkel's suggestion is very clean and nice. I would just like to offer another way to do it using imgaug, a convenient way to augment images in lots of different ways. It's usefull if you want more implemented augmentations or if you ever need to use some ML library other than Keras.
It unfortunatly doesn't have a way to make crops that way but it allows implementing custom functions. Here is an example function for generating random crops of a set size from an image that's at least as big as the chosen crop size:
from imgaug import augmenters as iaa
def random_crop(images, random_state, parents, hooks):
crop_h, crop_w = 128, 128
new_images = []
for img in images:
if (img.shape[0] >= crop_h) and (img.shape[1] >= crop_w):
rand_h = np.random.randint(0, img.shape[0]-crop_h)
rand_w = np.random.randint(0, img.shape[1]-crop_w)
new_images.append(img[rand_h:rand_h+crop_h, rand_w:rand_w+crop_w])
else:
new_images.append(np.zeros((crop_h, crop_w, 3)))
return np.array(new_images)
def keypoints_dummy(keypoints_on_images, random_state, parents, hooks):
return keypoints_on_images
cropper = iaa.Lambda(func_images=random_crop, func_keypoints=keypoints_dummy)
You can then combine this function with any other builtin imgaug function, for example the flip functions that you're already using like this:
seq = iaa.Sequential([cropper, iaa.Fliplr(0.5), iaa.Flipud(0.5)])
This function could then generate lots of different crops from each image. An example image with some possible results (note that it would result in actual (128, 128, 3) images, they are just merged into one image here for visualization):
Your image set could then be generated by:
crops_per_image = 10
images = [skimage.io.imread(path) for path in glob.glob('train_data/*.jpg')]
augs = np.array([seq.augment_image(img)/255 for img in images for _ in range(crops_per_image)])
It would also be simple to add new functions to be applied to the images, for example the remove mean functions you mentioned.
Here's another way performing random and center crop before resizing using native ImageDataGenerator and flow_from_directory. You can add it as preprocess_crop.py module into your project.
It first resizes image preserving aspect ratio and then performs crop. Resized image size is based on crop_fraction which is hardcoded but can be changed. See crop_fraction = 0.875 line where 0.875 appears to be the most common, e.g. 224px crop from 256px image.
Note that the implementation has been done by monkey patching keras_preprocessing.image.utils.loag_img function as I couldn't find any other way to perform crop before resizing without rewriting many other classes above.
Due to these limitations, the cropping method is enumerated into the interpolation field. Methods are delimited by : where the first part is interpolation and second is crop e.g. lanczos:random. Supported crop methods are none, center, random. When no crop method is specified, none is assumed.
How to use it
Just drop the preprocess_crop.py into your project to enable cropping. The example below shows how you can use random cropping for the training and center cropping for validation:
import preprocess_crop
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.inception_v3 import preprocess_input
#...
# Training with random crop
train_datagen = ImageDataGenerator(
rotation_range=20,
channel_shift_range=20,
horizontal_flip=True,
preprocessing_function=preprocess_input
)
train_img_generator = train_datagen.flow_from_directory(
train_dir,
target_size = (IMG_SIZE, IMG_SIZE),
batch_size = BATCH_SIZE,
class_mode = 'categorical',
interpolation = 'lanczos:random', # <--------- random crop
shuffle = True
)
# Validation with center crop
validate_datagen = ImageDataGenerator(
preprocessing_function=preprocess_input
)
validate_img_generator = validate_datagen.flow_from_directory(
validate_dir,
target_size = (IMG_SIZE, IMG_SIZE),
batch_size = BATCH_SIZE,
class_mode = 'categorical',
interpolation = 'lanczos:center', # <--------- center crop
shuffle = False
)
Here's preprocess_crop.py file to include with your project:
import random
import keras_preprocessing.image
def load_and_crop_img(path, grayscale=False, color_mode='rgb', target_size=None,
interpolation='nearest'):
"""Wraps keras_preprocessing.image.utils.loag_img() and adds cropping.
Cropping method enumarated in interpolation
# Arguments
path: Path to image file.
color_mode: One of "grayscale", "rgb", "rgba". Default: "rgb".
The desired image format.
target_size: Either `None` (default to original size)
or tuple of ints `(img_height, img_width)`.
interpolation: Interpolation and crop methods used to resample and crop the image
if the target size is different from that of the loaded image.
Methods are delimited by ":" where first part is interpolation and second is crop
e.g. "lanczos:random".
Supported interpolation methods are "nearest", "bilinear", "bicubic", "lanczos",
"box", "hamming" By default, "nearest" is used.
Supported crop methods are "none", "center", "random".
# Returns
A PIL Image instance.
# Raises
ImportError: if PIL is not available.
ValueError: if interpolation method is not supported.
"""
# Decode interpolation string. Allowed Crop methods: none, center, random
interpolation, crop = interpolation.split(":") if ":" in interpolation else (interpolation, "none")
if crop == "none":
return keras_preprocessing.image.utils.load_img(path,
grayscale=grayscale,
color_mode=color_mode,
target_size=target_size,
interpolation=interpolation)
# Load original size image using Keras
img = keras_preprocessing.image.utils.load_img(path,
grayscale=grayscale,
color_mode=color_mode,
target_size=None,
interpolation=interpolation)
# Crop fraction of total image
crop_fraction = 0.875
target_width = target_size[1]
target_height = target_size[0]
if target_size is not None:
if img.size != (target_width, target_height):
if crop not in ["center", "random"]:
raise ValueError('Invalid crop method {} specified.', crop)
if interpolation not in keras_preprocessing.image.utils._PIL_INTERPOLATION_METHODS:
raise ValueError(
'Invalid interpolation method {} specified. Supported '
'methods are {}'.format(interpolation,
", ".join(keras_preprocessing.image.utils._PIL_INTERPOLATION_METHODS.keys())))
resample = keras_preprocessing.image.utils._PIL_INTERPOLATION_METHODS[interpolation]
width, height = img.size
# Resize keeping aspect ratio
# result shold be no smaller than the targer size, include crop fraction overhead
target_size_before_crop = (target_width/crop_fraction, target_height/crop_fraction)
ratio = max(target_size_before_crop[0] / width, target_size_before_crop[1] / height)
target_size_before_crop_keep_ratio = int(width * ratio), int(height * ratio)
img = img.resize(target_size_before_crop_keep_ratio, resample=resample)
width, height = img.size
if crop == "center":
left_corner = int(round(width/2)) - int(round(target_width/2))
top_corner = int(round(height/2)) - int(round(target_height/2))
return img.crop((left_corner, top_corner, left_corner + target_width, top_corner + target_height))
elif crop == "random":
left_shift = random.randint(0, int((width - target_width)))
down_shift = random.randint(0, int((height - target_height)))
return img.crop((left_shift, down_shift, target_width + left_shift, target_height + down_shift))
return img
# Monkey patch
keras_preprocessing.image.iterator.load_img = load_and_crop_img

Mask rcnn not working for images with large resolution

I used Mask-Rcnn for training an image set (Note with high resolution Eg:2400*1920 ) with VIAtool following this reference article Mask rcnn usage. Here, I have edited the Ballon.py and the code is as follows:
import os
import sys
import json
import datetime
import numpy as np
import skimage.draw
# Root directory of the project
ROOT_DIR = os.path.abspath("../../")
# Import Mask RCNN
sys.path.append(ROOT_DIR) # To find local version of the library
from mrcnn.config import Config
from mrcnn import model as modellib, utils
# Path to trained weights file
COCO_WEIGHTS_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5")
if COCO_WEIGHTS_PATH is None:
print('weights not available')
else:
print('weights available')
DEFAULT_LOGS_DIR = os.path.join(ROOT_DIR, "logs")
# Configurations
class NeuralCodeConfig(Config):
NAME = "screens"
# We use a GPU with 12GB memory, which can fit two images.
# Adjust down if you use a smaller GPU.
IMAGES_PER_GPU = 1
# Number of classes (including background)
NUM_CLASSES = 1 + 10 # Background + other region classes
# Number of training steps per epoch
STEPS_PER_EPOCH = 30
# Skip detections with < 90% confidence
DETECTION_MIN_CONFIDENCE = 0.9
# Dataset
class NeuralCodeDataset(utils.Dataset):
def load_screen(self, dataset_dir, subset):
"""Load a subset of the screens dataset.
dataset_dir: Root directory of the dataset.
subset: Subset to load: train or val
"""
# Add classes.
self.add_class("screens",1,"logo")
self.add_class("screens",2,"slider")
self.add_class("screens",3,"navigation")
self.add_class("screens",4,"forms")
self.add_class("screens",5,"social_media_icons")
self.add_class("screens",6,"video")
self.add_class("screens",7,"map")
self.add_class("screens",8,"pagination")
self.add_class("screens",9,"pricing_table_block")
self.add_class("screens",10,"gallery")
# Train or validation dataset?
assert subset in ["train", "val"]
dataset_dir = os.path.join(dataset_dir, subset)
# Load annotations
# VGG Image Annotator saves each image in the form:
# { 'filename': '28503151_5b5b7ec140_b.jpg',
# 'regions': {
# '0': {
# 'region_attributes': {},
# 'shape_attributes': {
# 'all_points_x': [...],
# 'all_points_y': [...],
# 'name': 'polygon'}},
# ... more regions ...
# },
# 'size': 100202
# }
# We mostly care about the x and y coordinates of each region
annotations = json.load(open(os.path.join(dataset_dir, "via_region_data.json")))
if annotations is None:
print ("region data json not loaded")
else:
print("region data json loaded")
# print(annotations)
annotations = list(annotations.values()) # don't need the dict keys
# The VIA tool saves images in the JSON even if they don't have any
# annotations. Skip unannotated images.
annotations = [a for a in annotations if a['regions']]
# Add images
for a in annotations:
# Get the x, y coordinaets of points of the polygons that make up
# the outline of each object instance. There are stores in the
# shape_attributes and region_attributes (see json format above)
polygons = [r['shape_attributes'] for r in a['regions']]
screens = [r['region_attributes']for r in a['regions']]
#getting the filename by spliting
class_name = screens[0]['html']
file_name = a['filename'].split("/")
file_name = file_name[len(file_name)-1]
#getting class_ids with file_name
class_ids = class_name+"_"+file_name
# #getting width an height of the images
# height = [h['height'] for h in polygons]
# width = [w['width'] for w in polygons]
# print(height,'height')
# print('polygons',polygons)
# load_mask() needs the image size to convert polygons to masks.
# Unfortunately, VIA doesn't include it in JSON, so we must readpath
# the image. This is only managable since the dataset is tiny.
image_path = os.path.join(dataset_dir,file_name)
image = skimage.io.imread(image_path)
#resizing images
# image = utils.resize_image(image, min_dim=800, max_dim=1000, min_scale=None, mode="square")
# print('image',image)
height,width = image.shape[:2]
# print('height',height)
# print('width',width)
# height = 800
# width = 800
self.add_image(
"screens",
image_id=file_name, # use file name as a unique image id
path=image_path,
width=width, height=height,
polygons=polygons,
class_ids=class_ids)
def load_mask(self, image_id):
"""Generate instance masks for an image.
Returns:
masks: A bool array of shape [height, width, instance count] with
one mask per instance.
class_ids: a 1D array of class IDs of the instance masks.
"""
# If not a screens dataset image, delegate to parent class.
image_info = self.image_info[image_id]
if image_info["source"] != "screens":
return super(self.__class__, self).load_mask(image_id)
# Convert polygons to a bitmap mask of shape
# [height, width, instance_count]
info = self.image_info[image_id]
mask = np.zeros([info["height"], info["width"], len(info["polygons"])],
dtype=np.uint8)
for i, p in enumerate(info["polygons"]):
# Get indexes of pixels inside the polygon and set them to 1
rr, cc = skimage.draw.polygon(p['y'], p['x'])
mask[rr, cc, i] = 1
# Return mask, and array of class IDs of each instance. Since we have
# one class ID only, we return an array of 1s
# return mask.astype(np.bool), np.ones([mask.shape[-1]], dtype=np.int32)
# class_ids = np.array(class_ids,dtype=np.int32)
return mask,class_ids
def image_reference(self, image_id):
"""Return the path of the image."""
info = self.image_info[image_id]
if info["source"] == "screens":
return info["path"]
else:
super(self.__class__, self).image_reference(image_id)
def train(model):
# Train the model.
# Training dataset.
dataset_train = NeuralCodeDataset()
dataset_train.load_screen(args.dataset, "train")
dataset_train.prepare()
# Validation dataset
dataset_val = NeuralCodeDataset()
dataset_val.load_screen(args.dataset, "val")
dataset_val.prepare()
# *** This training schedule is an example. Update to your needs ***
# Since we're using a very small dataset, and starting from
# COCO trained weights, we don't need to train too long. Also,
# no need to train all layers, just the heads should do it.
print("Training network heads")
model.train(dataset_train, dataset_val,
learning_rate=config.LEARNING_RATE,
epochs=30,
layers='heads')
# Training
if __name__ == '__main__':
import argparse
# Parse command line arguments
parser = argparse.ArgumentParser(
description='Train Mask R-CNN to detect screens.')
parser.add_argument("command",
metavar="<command>",
help="'train' or 'splash'")
parser.add_argument('--dataset', required='True',
metavar="../../datasets/screens",
help='Directory of the screens dataset')
parser.add_argument('--weights', required=True,
metavar="/weights.h5",
help="Path to weights .h5 file or 'coco'")
parser.add_argument('--logs', required=False,
default=DEFAULT_LOGS_DIR,
metavar="../../logs/",
help='Logs and checkpoints directory (default=logs/)')
parser.add_argument('--image', required=False,
metavar="path or URL to image",
help='Image to apply the color splash effect on')
parser.add_argument('--video', required=False,
metavar="path or URL to video",
help='Video to apply the color splash effect on')
args = parser.parse_args()
# Validate arguments
if args.command == "train":
assert args.dataset, "Argument --dataset is required for training"
elif args.command == "splash":
assert args.image or args.video,\
"Provide --image or --video to apply color splash"
print("Weights: ", args.weights)
print("Dataset: ", args.dataset)
print("Logs: ", args.logs)
# Configurations
if args.command == "train":
config = NeuralCodeConfig()
else:
class InferenceConfig(NeuralCodeConfig):
# Set batch size to 1 since we'll be running inference on
# one image at a time. Batch size = GPU_COUNT * IMAGES_PER_GPU
GPU_COUNT = 1
IMAGES_PER_GPU = 1
config = InferenceConfig()
config.display()
# Create model
if args.command == "train":
model = modellib.MaskRCNN(mode="training", config=config,
model_dir=args.logs)
else:
model = modellib.MaskRCNN(mode="inference", config=config,
model_dir=args.logs)
# Select weights file to load
if args.weights.lower() == "coco":
weights_path = COCO_WEIGHTS_PATH
# Download weights file
if not os.path.exists(weights_path):
utils.download_trained_weights(weights_path)
elif args.weights.lower() == "last":
# Find last trained weights
weights_path = model.find_last()
elif args.weights.lower() == "imagenet":
# Start from ImageNet trained weights
weights_path = model.get_imagenet_weights()
else:
weights_path = args.weights
# Load weights
print("Loading weights ", weights_path)
if args.weights.lower() == "coco":
# Exclude the last layers because they require a matching
# number of classes
model.load_weights(weights_path, by_name=True, exclude=[
"mrcnn_class_logits", "mrcnn_bbox_fc",
"mrcnn_bbox", "mrcnn_mask"])
else:
model.load_weights(weights_path, by_name=True)
# Train or evaluate
if args.command == "train":
train(model)
# elif args.command == "splash":
# detect_and_color_splash(model, image_path=args.image,
# video_path=args.video)
else:
print("'{}' is not recognized. "
"Use 'train' or 'splash'".format(args.command))
And I am getting the following error when training the data set with pretrained COCO dataset:
UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
2018-08-09 13:52:27.993239: W tensorflow/core/framework/allocator.cc:108] Allocation of 51380224 exceeds 10% of system memory.
2018-08-09 13:52:28.037704: W tensorflow/core/framework/allocator.cc:108] Allocation of 51380224 exceeds 10% of system memory.
/home/scit/anaconda3/lib/python3.6/site-packages/keras/engine/training.py:2022: UserWarning: Using a generator with use_multiprocessing=True` and multiple workers may duplicate your data. Please consider using the`keras.utils.Sequence class.
UserWarning('Using a generator with `use_multiprocessing=True`'
ERROR:root:Error processing image {'id': '487.jpg', 'source': 'screens', 'path': '../../datasets/screens/train/487.jpg', 'width': 1920, 'height': 7007, 'polygons': [{'name': 'rect', 'x': 384, 'y': 5, 'width': 116, 'height': 64}, {'name': 'rect', 'x': 989, 'y': 17, 'width': 516, 'height': 42}, {'name': 'rect', 'x': 984, 'y': 5933, 'width': 565, 'height': 273}, {'name': 'rect', 'x': 837, 'y': 6793, 'width': 238, 'height': 50}], 'class_ids': 'logo_487.jpg'}
Traceback (most recent call last):
File "/home/scit/Desktop/My_work/object_detection/mask_rcnn/mrcnn/model.py", line 1717, in data_generator
use_mini_mask=config.USE_MINI_MASK)
File "/home/scit/Desktop/My_work/object_detection/mask_rcnn/mrcnn/model.py", line 1219, in load_image_gt
mask, class_ids = dataset.load_mask(image_id)
File "neural_code.py", line 235, in load_mask
rr, cc = skimage.draw.polygon(p['y'], p['x'])
File "/home/scit/anaconda3/lib/python3.6/site-packages/skimage/draw/draw.py", line 441, in polygon
return _polygon(r, c, shape)
File "skimage/draw/_draw.pyx", line 217, in skimage.draw._draw._polygon (skimage/draw/_draw.c:4402)
OverflowError: Python int too large to convert to C ssize_t
My laptop graphics specs are follows:
Nvidia GeForce 830M (2 GB) with 250 CUDA cores
CPU specs:
Intel Core i5 (4th gen), 8 GB RAM
What may be the case here? Is it the resolution of the images or the incapability of my GPU. Shall I proceed with CPU?
I am sharing my observations with Mask RCNN while training my custom dataset.
My dataset comprises of images of various dimension (i.e. smallest image has approx 1700 x 1600 pixels and the largest image has approx 8500 x 4600 pixels).
I am training on nVIDIA RTX 2080Ti, 32 GB DDR4 RAM and while training I get the below mentioned warnings; but the training process completes.
UserWarning: Converting sparse IndexedSlices to a dense Tensor of unknown shape. This may consume a large amount of memory.
"Converting sparse IndexedSlices to a dense Tensor of unknown shape. "
2019-05-23 15:25:23.433774: W T:\src\github\tensorflow\tensorflow\core\common_runtime\bfc_allocator.cc:219] Allocator (GPU_0_bfc) ran out of memory trying to allocate 3.14GiB. The caller indicates that this is not a failure, but may mean that there could be performance gains if more memory were available.
Few months back, I tried the Matterport Splash of Color Example on my Laptop which has 12 GB RAM and nVIDIA 920M (2GB GPU); and have encountered similar Memory Errors.
So, we can suspect that size of the GPU Memory is a contributing factor in this error.
Additionally, batch size is another contributing factor; but I see that you have set the IMAGE_PER_GPU=1. If you search for the BATCH_SIZE in the config.py file present in the mrcnn folder, you will find –
self.BATCH_SIZE = self.IMAGES_PER_GPU * self.GPU_COUNT
So, in your case the batch_size is 1.
In conclusion, I would suggest to please try the same code on a more powerful GPU.

Speed up predictions for Object Detection

I am struggling to get good FPS for my predictions. I am running my predictions on a Tesla K80 and I'd like to speed up my predictions by at least a factor of 20. Here is my code:
def load_detection_graph(PATH_TO_CKPT):
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph = fid.read()
od_graph_def.ParseFromString(serialized_graph)
tf.import_graph_def(od_graph_def, name='')
return detection_graph
def load_image_into_numpy_array(image):
'''
convert image to numpy arrays
'''
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape((im_height, im_width, 3)).astype(np.uint8)
def run_inference_for_single_image(image, graph, filename):
with graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = {output.name for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
]:
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
tensor_name)
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, 0.5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict = sess.run(tensor_dict,
feed_dict={image_tensor: np.expand_dims(image, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['filename'] = filename
output_dict['num_detections'] = int(output_dict['num_detections'][0])
output_dict['detection_classes'] = output_dict[
'detection_classes'][0].astype(np.uint8)
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
def predict_image(TEST_IMAGE_PATHS, PATH_TO_CKPT, category_index, save_path):
detection_graph = load_detection_graph(PATH_TO_CKPT)
prediction_dict = defaultdict()
start_time = time.time()
for image_path in TEST_IMAGE_PATHS:
toc = time.time()
filename = image_path
image = Image.open(image_path)
# the array based representation of the image will be used later in order to prepare the
# result image with boxes and labels on it.
image_np = load_image_into_numpy_array(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Actual detection.
output_dict = run_inference_for_single_image(image_np, detection_graph, filename)
# Visualization of the results of a detection.
vis_util.visualize_boxes_and_labels_on_image_array(
image_np,
output_dict['detection_boxes'],
output_dict['detection_classes'],
output_dict['detection_scores'],
category_index,
instance_masks=output_dict.get('detection_masks'),
use_normalized_coordinates=True,
line_thickness=1)
prediction_dict[filename] = output_dict
plt.figure(figsize=(8,6), dpi=100)
plt.imshow(image_np)
plt.savefig(save_path+'{}'.format(filename))
tic = time.time()
print('{0} saved in {1:.2f}sec'.format(filename, tic-toc))
end_time = time.time()
print('{0:.2f}min to predict all images'.format((end_time-start_time)/60))
with open('../predictions/predictions.pickle', 'wb') as f:
pickle.dump(prediction_dict, f)
return prediction_dict
Right now I am getting about 1.8 sec per detection. That includes saving image and drawing bounding boxes. I do not need to save image or draw bounding boxes, I just need the output_dict. Any advice on how to speed this up?
Session creation is the most costly operation, dont re-create it everytime, try to re-use the session object
check this - run_inference_for_single_image(image, graph) - Tensorflow, object detection
I observed that using skimage.io.imread() or cv2.imread() is pretty fast in loading images. These functions directly load images as numpy arrays. So you can skip "image = Image.open(image_path)" and "image_np = load_image_into_numpy_array(image)". Just make sure "image_tensor" in sess.run gets the correct dimension.
Also skimage or opencv are faster than matplotlib for saving images

Creating a session in a graph that uses another graph and its session

Versions : I am using tensorflow (version : v1.1.0-13-g8ddd727 1.1.0) in python3 (Python 3.4.3 (default, Nov 17 2016, 01:08:31) [GCC 4.8.4] on linux), it is installed from source and GPU-based (name: GeForce GTX TITAN X major: 5 minor: 2 memoryClockRate (GHz) 1.076).
Context : Generative adversarial networks (GANs) learn to synthesise new samples from a high-dimensional distribution by passing samples drawn from a latent space through a generative network. When the high-dimensional distribution describes images of a particular data set, the network should learn to generate visually similar image samples for latent variables that are close to each other in the latent space. For tasks such as image retrieval and image classification, it may be useful to exploit the arrangement of the latent space by projecting images into it, and using this as a representation for discriminative tasks.
Context Problem : I am trying to invert a generator (compute L2 norm between an input image in cifar10 and a image g(z) of the generator, where z is a parameter to be trained with stochastic gradient descent in order to minimize this norm and find an approximation of the preimage of the input image).
Technical Issue : Therefore, I am building a new graph in a new session in tensorflow but I need to use a trained gan that was trained in another session, which I cannot import because the two graphs are not the same. That is to say, when I use sess.run(), the variables are not found and therefore there is a Error Message.
The code is
import tensorflow as tf
from data import cifar10, utilities
from . import dcgan
import logging
logger = logging.getLogger("gan.test")
BATCH_SIZE = 1
random_z = tf.get_variable(name='z_to_invert', shape=[BATCH_SIZE, 100], initializer=tf.random_normal_initializer())
#random_z = tf.random_normal([BATCH_SIZE, 100], mean=0.0, stddev=1.0, name='random_z')
# Generate images with generator
generator = dcgan.generator(random_z, is_training=True, name='generator')
# Add summaries to visualise output images
generator_visualisation = tf.cast(((generator / 2.0) + 0.5) * 255.0, tf.uint8)
summary_generator = tf.summary.\
image('summary/generator', generator_visualisation,
max_outputs=8)
#Create one image to test inverting
test_image = map((lambda inp: (inp[0]*2. -1., inp[1])),
utilities.infinite_generator(cifar10.get_train(), BATCH_SIZE))
inp, _ = next(test_image)
summary_inp = tf.summary.image('input_image', inp)
img_summary = tf.summary.merge([summary_generator, summary_inp])
with tf.name_scope('error'):
error = inp - generator #generator = g(z)
# We set axis = None because norm(tensor, ord=ord) is equivalent to norm(reshape(tensor, [-1]), ord=ord)
error_norm = tf.norm(error, ord=2, axis=None, keep_dims=False, name='L2Norm')
summary_error = tf.summary.scalar('error_norm', error_norm)
with tf.name_scope('Optimizing'):
optimizer = tf.train.AdamOptimizer(0.001).minimize(error_norm, var_list=z)
sv = tf.train.Supervisor(logdir="gan/invert_logs/", save_summaries_secs=None, save_model_secs=None)
batch = 0
with sv.managed_session() as sess:
logwriter = tf.summary.FileWriter("gan/invert_logs/", sess.graph)
while not sv.should_stop():
if batch > 0 and batch % 100 == 0:
logger.debug('Step {} '.format(batch))
(_, s) = sess.run((optimizer, summary_error))
logwriter.add_summary(s, batch)
print('step %d: Patiente un peu poto!' % batch)
img = sess.run(img_summary)
logwriter.add_summary(img, batch)
batch += 1
print(batch)
I understood what is the problem, it is actually that I am trying to run a session which is saved in gan/train_logs but the graph does not have those variables I am trying to run.
Therefore, I tried to implement this instead :
graph = tf.Graph()
tf.reset_default_graph()
with tf.Session(graph=graph) as sess:
ckpt = tf.train.get_checkpoint_state('gan/train_logs/')
saver = tf.train.import_meta_graph(ckpt.model_checkpoint_path + '.meta', clear_devices=True)
saver.restore(sess, ckpt.model_checkpoint_path)
logwriter = tf.summary.FileWriter("gan/invert_logs/", sess.graph)
#inp, _ = next(test_image)
BATCH_SIZE = 1
#Create one image to test inverting
test_image = map((lambda inp: (inp[0]*2. -1., inp[1])),
utilities.infinite_generator(cifar10.get_train(), BATCH_SIZE))
inp, _ = next(test_image)
#M_placeholder = tf.placeholder(tf.float32, shape=cifar10.get_shape_input(), name='M_input')
M_placeholder = inp
zmar = tf.summary.image('input_image', inp)
#Create sample noise from random normal distribution
z = tf.get_variable(name='z', shape=[BATCH_SIZE, 100], initializer=tf.random_normal_initializer())
# Function g(z) zhere z is randomly generated
g_z = dcgan.generator(z, is_training=True, name='generator')
generator_visualisation = tf.cast(((g_z / 2.0) + 0.5) * 255.0, tf.uint8)
sum_generator = tf.summary.image('summary/generator', generator_visualisation)
img_summary = tf.summary.merge([sum_generator, zmar])
with tf.name_scope('error'):
error = M_placeholder - g_z
# We set axis = None because norm(tensor, ord=ord) is equivalent to norm(reshape(tensor, [-1]), ord=ord)
error_norm = tf.norm(error, ord=2, axis=None, keep_dims=False, name='L2Norm')
summary_error = tf.summary.scalar('error_norm', error_norm)
with tf.name_scope('Optimizing'):
optimizer = tf.train.AdamOptimizer(0.001).minimize(error_norm, var_list=z)
sess.run(tf.global_variables_initializer())
for i in range(10000):
(_, s) = sess.run((optimizer, summary_error))
logwriter.add_summary(s, i)
print('step %d: Patiente un peu poto!' % i)
img = sess.run(img_summary)
logwriter.add_summary(img, i)
print('Done Training')
This script runs, but I have checked on tensorboard, the generator that is used here does not have the trained weights and it only produces noise.
I think I am trying to run a session in a graph that uses another graph and its trained session. I have read thoroughly the Graphs and Session documentation on tensorflow website https://www.tensorflow.org/versions/r1.3/programmers_guide/graphs, I have found an interesting tf.import_graph_def function :
You can rebind tensors in the imported graph to tf.Tensor objects in the default graph by passing the optional input_map argument. For example, input_map enables you to take import a graph fragment defined in a tf.GraphDef, and statically connect tensors in the graph you are building to tf.placeholder tensors in that fragment.
You can return tf.Tensor or tf.Operation objects from the imported graph by passing their names in the return_elements list.
But I don't know how to use this function, no example is given, and also I only found those two links that may help me :
https://github.com/tensorflow/tensorflow/issues/7508
Tensorflow: How to use a trained model in a application?
It would be really nice to have your help on this topic. This should be straightforward for someone who has already used the tf.import_graph_def function... What I really need is to get the trained generator to apply it to a new variable z which is to be trained in another session.
Thanks

Resources