Keras: difference in flow from directory and own input - keras

I noticed a performance drop from around 10% in accuracy between what Keras gives as output and when I test it myself. So I reproduced this, see the small code snippet below. I generate input in two ways. input is generated by the Keras ImageGenerator (no augmentations) and input2 is produced without ImageGenerator.
import numpy as np
from keras.preprocessing import image
from keras.preprocessing.image import ImageDataGenerator
import os
import pdb
def preprocess(img):
img = image.array_to_img(img)
width, height = img.size
# Crop 48x48px
desired_width, desired_height = 48, 48
if width < 48:
desired_width = width
start_x = np.maximum(0, int((width-desired_width)/2))
img = img.crop((start_x, np.maximum(0, height-desired_height), start_x+desired_width, height))
img = img.resize((48, 48))
img = image.img_to_array(img)
return img / 255.
datagen = ImageDataGenerator(
featurewise_center=False,
featurewise_std_normalization=False,
preprocessing_function=preprocess)
generator = datagen.flow_from_directory(
'numbers_train',
target_size=(48,48),
batch_size=1024, # Only 405 images in directory, so batch always the same
classes=['02'],
shuffle=False,
class_mode='sparse')
inputs, targets = next(generator)
folder = 'numbers_train/02'
files = os.listdir(folder)
files = list(map(lambda x: os.path.join(folder, x), files))
images = []
for f in files:
img = image.load_img(f)
images.append(preprocess(img))
inputs2 = np.asarray(images)
print(np.mean(inputs))
print(np.mean(inputs2))
This gives two different values, where I expect that input and input2 are the same.
0.403158
0.41354
This causes a difference in accuracy of around 10%. What is happening here?
Edit: It seems to be something with the resizing of the images. Remove the img.resize in preprocess and add this line in the for loop before preprocessing and the means will be the same. But what I want is that the resizing is done after the cropping.
Edit2: So the ImageDataGenerator does first the resizing to (48,48) and then it calls the preprocess function. I want it the other way around. Does someone know a trick to do this?

Related

How to increase the image size extracted from visualizing the feature map?

can someone help me on how to increase the size of images from feature map extracted? i recently run CNN on set of images and would like to see the feature extracted. I manage to extract it but unable to actually see it because it was too small.
My code:
from matplotlib import pyplot
#summarize feature map shapes
for i in range(len(cnn.layers)):
layer = cnn.layers[i]
#check fr conv layer
if 'conv' not in layer.name:
continue
print(i, layer.name,layer.output.shape)
from keras import models
from keras.preprocessing import image
model_new = models.Model(inputs=cnn.inputs, outputs=cnn.layers[1].output)
img_path = 'train/1/2NbeGPsQf2Q - 4 0.jpg'
img = image.load_img(img_path, target_size=(img_rows, img_cols))
import numpy as np
from keras.applications.imagenet_utils import decode_predictions, preprocess_input
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = preprocess_input(img)
features = model_new.predict(img)
square = 10
ix = 1
for _ in range(square):
for _ in range(square):
# specify subplot and turn of axis
ax = pyplot.subplot(square, square, ix)
ax.set_xticks([])
ax.set_yticks([])
# plot filter channel in colour
pyplot.imshow(features[0, :, :, ix-1], cmap='viridis')
ix += 1
# show the figure
pyplot.show()
the result is at attached.output of feature map layer 1
its too small. How can i make it bigger so i can see what actually is there?
Appreciate for any input. Thanks!

How to create a similar image dataset of mnist with shape (12500, 50,50)

How to create a similar image dataset of mnist with shape (12500, 50,50)
I have a folder with 12500 images. I want to generate a datset with these images to work with sorting images in keras. I want to generate a dataset similar to mnist so that with shape (12500, 50,50). I'm wrapped up in creating the code to generate the dataset. I'm trying to create a numpy array but it's not getting the format I want. I believe I should use the opencv resize function to leave all images with height and width with 50x50 shape.
Grateful for the attention
import cv2
import glob
import numpy as np
X_data = []
files = glob.glob ("C:/Teste_datasets/PetImages/Cat/*.jpg")
for myFile in files:
print(myFile)
image = cv2.imread (myFile, cv2.IMREAD_GRAYSCALE)
X_data.append (image)
X_data = np.array(X_data)
X_data = X_data.astype('float32') / 255
IMG_SIZE = 50
X_data = cv2.resize(X_data, (IMG_SIZE, IMG_SIZE))
X_data = X_data.reshape((X_data.shape[0], 50, 50,1))
You should resize images, instead of the whole dataset:
import cv2
import glob
import numpy as np
X_data = []
files = glob.glob ("C:/Teste_datasets/PetImages/Cat/*.jpg")
IMG_SIZE = 50
for myFile in files:
print(myFile)
image = cv2.imread (myFile, cv2.IMREAD_GRAYSCALE)
image = cv2.resize(image, (IMG_SIZE, IMG_SIZE))
X_data.append (image)
X_data = np.array(X_data)
X_data = X_data.astype('float32') / 255
print(X_data.shape)
[daniel#daniel-pc Keras]$ python3 testeKeras.py
<...>/2.png
<...>/1.png
(2, 50, 50)
Also, there's no reason to reshape, because since you load the image with cv2.IMREAD_GRAYSCALE you already have a single value representing the color.

Keras Image Preprocessing

My training images are downscaled versions of their associated HR image. Thus, the input and the output images aren't the same dimension. For now, I'm using a hand-crafted sample of 13 images, but eventually I would like to be able to use my 500-ish HR (high-resolution) images dataset. This dataset, however, does not have images of the same dimension, so I'm guessing I'll have to crop them in order to obtain a uniform dimension.
I currently have this code set up: it takes a bunch of 512x512x3 images and applies a few transformations to augment the data (flips). I thus obtain a basic set of 39 images in their HR form, and then I downscale them by a factor of 4, thus obtaining my trainset which consits of 39 images of dimension 128x128x3.
import numpy as np
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.image as mpimg
import skimage
from skimage import transform
from constants import data_path
from constants import img_width
from constants import img_height
from model import setUpModel
def setUpImages():
train = []
finalTest = []
sample_amnt = 11
max_amnt = 13
# Extracting images (512x512)
for i in range(sample_amnt):
train.append(mpimg.imread(data_path + str(i) + '.jpg'))
for i in range(max_amnt-sample_amnt):
finalTest.append(mpimg.imread(data_path + str(i+sample_amnt) + '.jpg'))
# # TODO: https://keras.io/preprocessing/image/
# ImageDataGenerator(featurewise_center=False, samplewise_center=False, featurewise_std_normalization=False,
# samplewise_std_normalization=False, zca_whitening=False, zca_epsilon=1e-06, rotation_range=0,
# width_shift_range=0.0, height_shift_range=0.0, brightness_range=None, shear_range=0.0,
# zoom_range=0.0, channel_shift_range=0.0, fill_mode='nearest', cval=0.0, horizontal_flip=False,
# vertical_flip=False, rescale=None, preprocessing_function=None, data_format=None,
# validation_split=0.0, dtype=None)
# Augmenting data
trainData = dataAugmentation(train)
testData = dataAugmentation(finalTest)
setUpData(trainData, testData)
def setUpData(trainData, testData):
# print(type(trainData)) # <class 'numpy.ndarray'>
# print(len(trainData)) # 64
# print(type(trainData[0])) # <class 'numpy.ndarray'>
# print(trainData[0].shape) # (1400, 1400, 3)
# print(trainData[len(trainData)//2-1].shape) # (1400, 1400, 3)
# print(trainData[len(trainData)//2].shape) # (350, 350, 3)
# print(trainData[len(trainData)-1].shape) # (350, 350, 3)
# TODO: substract mean of all images to all images
# Separating the training data
Y_train = trainData[:len(trainData)//2] # First half is the unaltered data
X_train = trainData[len(trainData)//2:] # Second half is the deteriorated data
# Separating the testing data
Y_test = testData[:len(testData)//2] # First half is the unaltered data
X_test = testData[len(testData)//2:] # Second half is the deteriorated data
# Adjusting shapes for Keras input # TODO: make into a function ?
X_train = np.array([x for x in X_train])
Y_train = np.array([x for x in Y_train])
Y_test = np.array([x for x in Y_test])
X_test = np.array([x for x in X_test])
# # Sanity check: display four images (2x HR/LR)
# plt.figure(figsize=(10, 10))
# for i in range(2):
# plt.subplot(2, 2, i + 1)
# plt.imshow(Y_train[i], cmap=plt.cm.binary)
# for i in range(2):
# plt.subplot(2, 2, i + 1 + 2)
# plt.imshow(X_train[i], cmap=plt.cm.binary)
# plt.show()
setUpModel(X_train, Y_train, X_test, Y_test)
# TODO: possibly remove once Keras Preprocessing is integrated?
def dataAugmentation(dataToAugment):
print("Starting to augment data")
arrayToFill = []
# faster computation with values between 0 and 1 ?
dataToAugment = np.divide(dataToAugment, 255.)
# TODO: switch from RGB channels to CbCrY
# # TODO: Try GrayScale
# trainingData = np.array(
# [(cv2.cvtColor(np.uint8(x * 255), cv2.COLOR_BGR2GRAY) / 255).reshape(350, 350, 1) for x in trainingData])
# validateData = np.array(
# [(cv2.cvtColor(np.uint8(x * 255), cv2.COLOR_BGR2GRAY) / 255).reshape(1400, 1400, 1) for x in validateData])
# adding the normal images (8)
for i in range(len(dataToAugment)):
arrayToFill.append(dataToAugment[i])
# vertical axis flip (-> 16)
for i in range(len(arrayToFill)):
arrayToFill.append(np.fliplr(arrayToFill[i]))
# horizontal axis flip (-> 32)
for i in range(len(arrayToFill)):
arrayToFill.append(np.flipud(arrayToFill[i]))
# downsizing by scale of 4 (-> 64 images of 128x128x3)
for i in range(len(arrayToFill)):
arrayToFill.append(skimage.transform.resize(
arrayToFill[i],
(img_width/4, img_height/4),
mode='reflect',
anti_aliasing=True))
# # Sanity check: display the images
# plt.figure(figsize=(10, 10))
# for i in range(64):
# plt.subplot(8, 8, i + 1)
# plt.imshow(arrayToFill[i], cmap=plt.cm.binary)
# plt.show()
return np.array(arrayToFill)
My question is: in my case, can I use the Preprocessing tool that Keras offers? I would ideally like to be able to input my varying sized images of high quality, crop them (not downsize them) to 512x512x3, and data augment them through flips and whatnot. Substracting the mean would also be part of what I'd like to achieve. That set would represent my validation set.
Reusing the validation set, I want to downscale by a factor of 4 all the images, and that would generate my training set.
Those two sets could then be split appropriately to obtain, ultimately, the famous X_train Y_train X_test Y_test.
I'm just hesitant about throwing out all the work I've done so far to preprocess my mini sample, but I'm thinking if it can all be done with a single built-in function, maybe I should give that a go.
This is my first ML project, hence me not understanding very well Keras, and the documentation isn't always the clearest. I'm thinking that the fact that I'm working with a X and Y that are different in size, maybe this function doesn't apply to my project.
Thank you! :)
Yes you can use keras preprocessing function. Below some snippets to help you...
def cropping_function(x):
...
return cropped_image
X_image_gen = ImageDataGenerator(preprocessing_function = cropping_function,
horizontal_flip = True,
vertical_flip=True)
X_train_flow = X_image_gen.flow(X_train, batch_size = 16, seed = 1)
Y_image_gen = ImageDataGenerator(horizontal_flip = True,
vertical_flip=True)
Y_train_flow = Y_image_gen.flow(y_train, batch_size = 16, seed = 1)
train_flow = zip(X_train_flow,Y_train_flow)
model.fit_generator(train_flow)
Christof Henkel's suggestion is very clean and nice. I would just like to offer another way to do it using imgaug, a convenient way to augment images in lots of different ways. It's usefull if you want more implemented augmentations or if you ever need to use some ML library other than Keras.
It unfortunatly doesn't have a way to make crops that way but it allows implementing custom functions. Here is an example function for generating random crops of a set size from an image that's at least as big as the chosen crop size:
from imgaug import augmenters as iaa
def random_crop(images, random_state, parents, hooks):
crop_h, crop_w = 128, 128
new_images = []
for img in images:
if (img.shape[0] >= crop_h) and (img.shape[1] >= crop_w):
rand_h = np.random.randint(0, img.shape[0]-crop_h)
rand_w = np.random.randint(0, img.shape[1]-crop_w)
new_images.append(img[rand_h:rand_h+crop_h, rand_w:rand_w+crop_w])
else:
new_images.append(np.zeros((crop_h, crop_w, 3)))
return np.array(new_images)
def keypoints_dummy(keypoints_on_images, random_state, parents, hooks):
return keypoints_on_images
cropper = iaa.Lambda(func_images=random_crop, func_keypoints=keypoints_dummy)
You can then combine this function with any other builtin imgaug function, for example the flip functions that you're already using like this:
seq = iaa.Sequential([cropper, iaa.Fliplr(0.5), iaa.Flipud(0.5)])
This function could then generate lots of different crops from each image. An example image with some possible results (note that it would result in actual (128, 128, 3) images, they are just merged into one image here for visualization):
Your image set could then be generated by:
crops_per_image = 10
images = [skimage.io.imread(path) for path in glob.glob('train_data/*.jpg')]
augs = np.array([seq.augment_image(img)/255 for img in images for _ in range(crops_per_image)])
It would also be simple to add new functions to be applied to the images, for example the remove mean functions you mentioned.
Here's another way performing random and center crop before resizing using native ImageDataGenerator and flow_from_directory. You can add it as preprocess_crop.py module into your project.
It first resizes image preserving aspect ratio and then performs crop. Resized image size is based on crop_fraction which is hardcoded but can be changed. See crop_fraction = 0.875 line where 0.875 appears to be the most common, e.g. 224px crop from 256px image.
Note that the implementation has been done by monkey patching keras_preprocessing.image.utils.loag_img function as I couldn't find any other way to perform crop before resizing without rewriting many other classes above.
Due to these limitations, the cropping method is enumerated into the interpolation field. Methods are delimited by : where the first part is interpolation and second is crop e.g. lanczos:random. Supported crop methods are none, center, random. When no crop method is specified, none is assumed.
How to use it
Just drop the preprocess_crop.py into your project to enable cropping. The example below shows how you can use random cropping for the training and center cropping for validation:
import preprocess_crop
from keras.preprocessing.image import ImageDataGenerator
from keras.applications.inception_v3 import preprocess_input
#...
# Training with random crop
train_datagen = ImageDataGenerator(
rotation_range=20,
channel_shift_range=20,
horizontal_flip=True,
preprocessing_function=preprocess_input
)
train_img_generator = train_datagen.flow_from_directory(
train_dir,
target_size = (IMG_SIZE, IMG_SIZE),
batch_size = BATCH_SIZE,
class_mode = 'categorical',
interpolation = 'lanczos:random', # <--------- random crop
shuffle = True
)
# Validation with center crop
validate_datagen = ImageDataGenerator(
preprocessing_function=preprocess_input
)
validate_img_generator = validate_datagen.flow_from_directory(
validate_dir,
target_size = (IMG_SIZE, IMG_SIZE),
batch_size = BATCH_SIZE,
class_mode = 'categorical',
interpolation = 'lanczos:center', # <--------- center crop
shuffle = False
)
Here's preprocess_crop.py file to include with your project:
import random
import keras_preprocessing.image
def load_and_crop_img(path, grayscale=False, color_mode='rgb', target_size=None,
interpolation='nearest'):
"""Wraps keras_preprocessing.image.utils.loag_img() and adds cropping.
Cropping method enumarated in interpolation
# Arguments
path: Path to image file.
color_mode: One of "grayscale", "rgb", "rgba". Default: "rgb".
The desired image format.
target_size: Either `None` (default to original size)
or tuple of ints `(img_height, img_width)`.
interpolation: Interpolation and crop methods used to resample and crop the image
if the target size is different from that of the loaded image.
Methods are delimited by ":" where first part is interpolation and second is crop
e.g. "lanczos:random".
Supported interpolation methods are "nearest", "bilinear", "bicubic", "lanczos",
"box", "hamming" By default, "nearest" is used.
Supported crop methods are "none", "center", "random".
# Returns
A PIL Image instance.
# Raises
ImportError: if PIL is not available.
ValueError: if interpolation method is not supported.
"""
# Decode interpolation string. Allowed Crop methods: none, center, random
interpolation, crop = interpolation.split(":") if ":" in interpolation else (interpolation, "none")
if crop == "none":
return keras_preprocessing.image.utils.load_img(path,
grayscale=grayscale,
color_mode=color_mode,
target_size=target_size,
interpolation=interpolation)
# Load original size image using Keras
img = keras_preprocessing.image.utils.load_img(path,
grayscale=grayscale,
color_mode=color_mode,
target_size=None,
interpolation=interpolation)
# Crop fraction of total image
crop_fraction = 0.875
target_width = target_size[1]
target_height = target_size[0]
if target_size is not None:
if img.size != (target_width, target_height):
if crop not in ["center", "random"]:
raise ValueError('Invalid crop method {} specified.', crop)
if interpolation not in keras_preprocessing.image.utils._PIL_INTERPOLATION_METHODS:
raise ValueError(
'Invalid interpolation method {} specified. Supported '
'methods are {}'.format(interpolation,
", ".join(keras_preprocessing.image.utils._PIL_INTERPOLATION_METHODS.keys())))
resample = keras_preprocessing.image.utils._PIL_INTERPOLATION_METHODS[interpolation]
width, height = img.size
# Resize keeping aspect ratio
# result shold be no smaller than the targer size, include crop fraction overhead
target_size_before_crop = (target_width/crop_fraction, target_height/crop_fraction)
ratio = max(target_size_before_crop[0] / width, target_size_before_crop[1] / height)
target_size_before_crop_keep_ratio = int(width * ratio), int(height * ratio)
img = img.resize(target_size_before_crop_keep_ratio, resample=resample)
width, height = img.size
if crop == "center":
left_corner = int(round(width/2)) - int(round(target_width/2))
top_corner = int(round(height/2)) - int(round(target_height/2))
return img.crop((left_corner, top_corner, left_corner + target_width, top_corner + target_height))
elif crop == "random":
left_shift = random.randint(0, int((width - target_width)))
down_shift = random.randint(0, int((height - target_height)))
return img.crop((left_shift, down_shift, target_width + left_shift, target_height + down_shift))
return img
# Monkey patch
keras_preprocessing.image.iterator.load_img = load_and_crop_img

How to match cv2.imread to the keras image.img_load output

I'm studying deep learning. Trained an image classification algorithm. The problem is, however, that to train images I used:
test_image = image.load_img('some.png', target_size = (64, 64))
test_image = image.img_to_array(test_image)
While for actual application I use:
test_image = cv2.imread('trick.png')
test_image = cv2.resize(test_image, (64, 64))
But I found that those give a different ndarray (different data):
Last entries from load_image:
[ 64. 71. 66.]
[ 64. 71. 66.]
[ 62. 69. 67.]]]
Last entries from cv2.imread:
[ 15 23 27]
[ 16 24 28]
[ 14 24 28]]]
, so the system is not working. Is there a way to match results of one to another?
OpenCV reads images in BGR format whereas in keras, it is represented in RGB. To get the OpenCV version to correspond to the order we expect (RGB), simply reverse the channels:
test_image = cv2.imread('trick.png')
test_image = cv2.resize(test_image, (64, 64))
test_image = test_image[...,::-1] # Added
The last line reverses the channels to be in RGB order. You can then feed this into your keras model.
Another point I'd like to add is that cv2.imread usually reads in images in uint8 precision. Examining the output of your keras loaded image, you can see that the data is in floating point precision so you may also want to convert to a floating-point representation, such as float32:
import numpy as np
# ...
# ...
test_image = test_image[...,::-1].astype(np.float32)
As a final point, depending on how you trained your model it's usually customary to normalize the image pixel values to a [0,1] range. If you did this with your keras model, make sure you divide your values by 255 in your image read in through OpenCV:
import numpy as np
# ...
# ...
test_image = (test_image[...,::-1].astype(np.float32)) / 255.0
Recently, I came across the same issue. I tried to convert the color channel and resize the image with OpenCV. However, PIL and OpenCV have very different ways of image resizing.
Here is the exact solution to this problem.
This is the function that takes image file path , convert to targeted size and prepares for the Keras model -
import cv2
import keras
import numpy as np
from keras.preprocessing import image
from PIL import Image
def prepare_image (file):
im_resized = image.load_img(file, target_size = (224,224))
img_array = image.img_to_array(im_resized)
image_array_expanded = np.expand_dims(img_array, axis = 0)
return keras.applications.mobilenet.preprocess_input(image_array_expanded)
# execute the function
PIL_image = prepare_image ("lena.png")
If you have an OpenCV image then the function will be like this -
def prepare_image2 (img):
# convert the color from BGR to RGB then convert to PIL array
cvt_image = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
im_pil = Image.fromarray(cvt_image)
# resize the array (image) then PIL image
im_resized = im_pil.resize((224, 224))
img_array = image.img_to_array(im_resized)
image_array_expanded = np.expand_dims(img_array, axis = 0)
return keras.applications.mobilenet.preprocess_input(image_array_expanded)
# execute the function
img = cv2.imread("lena.png")
cv2_image = prepare_image2 (img)
# finally check if it is working
np.array_equal(PIL_image, cv2_image)
>> True
Besides CV2 using the BGR format and Keras (using PIL as a backend) using the RGB format, there are also significant differences in the resize methods of CV2 and PIL using the same parameters.
Multiple references can be found on the internet but the general idea is that there are subtle differences in pixel coordinate systems used in the two resize algorithms and also potential issues with different methods of casting to float as an intermediate step in the interpolation algo. End result is a visually similar image but one that is slightly shifted/perturbed between versions.
A perfect example of an adversarial attack that can cause huge differences in accuracy despite small input differences.

Crop an image to smaller size from left to right and top to bottom using OpenCV

I have an image 315x581. I want to crop it in 28x28 from top left to bottom right, then I need to save each 28x28 image in folder.
I could crop just one image from y1=0 to y2=28 and x1=0 to x2=28.
First problem is: I used cv2.imwrite("cropped.jpg", cropped) to save this small image, but It doesn't save it, provided that it works some line above.
Second problem is: How can I write a code which it keeps on cropping the image in 28x28 from left to right and top to bottom and save each subimage.
I used for loop, but I don't know how to complete it.
Thank you so much for any help.
Here this is my code,
import cv2
import numpy as np
from PIL import Image
import PIL.Image
import os
import gzip
import matplotlib
import matplotlib.pyplot as plt
import matplotlib.cm as cm
#%%
image1LL='C:/Users/Tala/Documents/PythonProjects/Poster-OpenCV-MaskXray/CHNCXR_0001_0_LL.jpg'
mask1LL='C:/Users/Tala/Documents/PythonProjects/Poster-OpenCV-MaskXray/CHNCXR_0001_0_threshLL.jpg'
#finalsSave='C:/Users/Tala/Documents/PythonProjects/Poster-OpenCV-MaskXray/Xray Result'
# load the image
img = cv2.imread(image1LL,0)
mask = cv2.imread(mask1LL,0)
# combine foreground+background
final1LL = cv2.bitwise_and(img,img,mask = mask)
cv2.imshow('final1LL',final1LL)
cv2.waitKey(100)
final1LL.size
final1LL.shape
# Save the image
cv2.imwrite('final1LL.jpg',final1LL)
# crop the image using array slices -- it's a NumPy array
# after all!
y1=0
x1=0
for y2 in range(0,580,28):
for x2 in range(0,314,28):
cropped = final1LL[0:28, 0:28]
cv2.imshow('cropped', cropped)
cv2.waitKey(100)
cv2.imwrite("cropped.jpg", cropped)
Your approach is good, but there is some fine tuning required. The following code will help you:
import cv2
filename = 'p1.jpg'
img = cv2.imread(filename, 1)
interval = 100
stride = 100
count = 0
print img.shape
for i in range(0, img.shape[0], interval):
for j in range(0, img.shape[1], interval):
print j
cropped_img = img[j:j + stride, i:i + stride] #--- Notice this part where you have to add the stride as well ---
count += 1
cv2.imwrite('cropped_image_' + str(count) + '_.jpg', cropped_img) #--- Also take note of how you would save all the cropped images by incrementing the count variable ---
cv2.waitKey()
My result:
Original image:
Some of the cropped images:
Cropped image 1
Cropped image 2
Cropped image 3
If you are using it in PyTorch as a deep learning framework, then this task would be quite easy and can be done without the need for any other external image processing libraries such as OpenCV. The below code will convert a single image into a stack of multiple images in a form of PyTorch tensor. If you want to use only images then you need to remove the line "transforms.ToTensor()" and save the "tens" variable in the code as an image using matplotlib.
Note: Here bird image is used with dimension 32 x 32 x 3, crop images 5x5x3 with stride =1.
image = Image.open('bird.png')
tensreal = trans(image)
trans = transforms.Compose([transforms.Resize(32),
transforms.ToTensor(),
])
stride = 1
crop_height = 5
crop_width = 5
img_height = 32
img_width = 32
tens_list = []
for i in range(0,img_width-crop_width,stride):
for j in range(0,img_height-crop_height ,stride):
tens = trans(image)
tens1 = tens[:, j:j+crop_height, i:i+crop_width]
tens_list.append(tens1)
all_tens = torch.stack(tens_list)
print(all_tens.size())

Resources