Pandas Groupby with Group Concat for integer values - python-3.x

My pandas dataframe looks like this, I am looking to group it by keys and concatenate the id's comma separated and create a new dataframe. Now the issue here is id column is integer.
df:
key id
0 abc 5073138
1 abcd 5025923
2 abc 7453197
3 abcd 5032121
4 abcd 5032121
5 abc 5032121
new df:
key id
0 abc 5073138,7453197,5032121
1 abcd 5025923,5096021,5032121
I tried using group by with apply and aggregate but didn't work
df.groupby('key').apply(lambda x: ','.join(x.id))
df.groupby('key').agg({'id' : lambda x: ', '.join(str(x))})

Your first solution almost worked:
df.groupby('key').id.apply(lambda x: ','.join(map(str, x)))
If the id column is converted to str in advance, it's simpler:
df.id = df.id.astype(str)
df.groupby('key').id.apply(','.join)
Though personally I dislike apply, and you may get better performance without it:
df.id = df.id.astype(str)
df.id += ',' # add trailing commas
df.groupby('key').id.sum().str[:-1] # sum of strs is concatenation
This gives the same result but in a fully vectorized way.

Related

Set New Dataframe Column If Existing Columns Value Starts With A Number

How can I create a new column (like below) to separate out values if they start with a number? I've attempted utilizing variations of isdigit() and slicing the value to look at the first character [:1], but I haven't been able to get this to work. df.apply(lambda x: x if x['attr'][:1].isdigit()==False)
Dummy Data:
data = {'Name':['Bob','Kyle','Kevin'],
'attr':['abc123','1230','(ab)']}
df = pd.DataFrame(data)
Desired Output:
data = {'Name':['Bob','Kyle','Kevin'],
'attr':['abc123','1230','(ab)'],
'num_start':[None,'1230',None],
'str_start':['abc123',None,'(ab)']}
df = pd.DataFrame(data)
Use a regex: r'^\d'
pandas.Series.str.startswith would work, except that it doesn't accept a regex; instead, use pandas.Series.str.contains and anchor to the start of the string with ^, then search for a numeric digit with \d.
df.attr.str.contains(r'^\d') gives a Series of True/False values; for rows where it is True, the value goes to the num_start column, and where it is False, the value goes to the str_start column.
From the first df,
condition = df.attr.str.contains(r'^\d')
df['num_start'] = df.attr.where(condition, other=None)
df['str_start'] = df.attr.where(~condition, other=None)
gives
Name attr num_start str_start
0 Bob abc123 None abc123
1 Kyle 1230 1230 None
2 Kevin (ab) None (ab)
Postscript
If this is an x-y problem, where you want to handle the rows differently depending on whether the attr starts with a digit or no, consider something like
for starts_with_num, group in df.groupby(condition):
# logic
if starts_with_num:
# do the thing (attr starts with a digit)
else:
# do the other thing (attr doesn't start with a digit)
Another possible solution:
cond = df['attr'].str.replace('[^\w\d]', '').str.contains(r'^\d')
df['num_start'] = np.where(cond, df['attr'], None)
df['str_start'] = np.where(cond, None, df['attr'])
Output:
Name attr num_start str_start
0 Bob abc123 None abc123
1 Kyle 1230 1230 None
2 Kevin (ab) None (ab)

Merge two Dataframes in combination with .isin() or .contains() or difflib? [duplicate]

I have two DataFrames which I want to merge based on a column. However, due to alternate spellings, different number of spaces, absence/presence of diacritical marks, I would like to be able to merge as long as they are similar to one another.
Any similarity algorithm will do (soundex, Levenshtein, difflib's).
Say one DataFrame has the following data:
df1 = DataFrame([[1],[2],[3],[4],[5]], index=['one','two','three','four','five'], columns=['number'])
number
one 1
two 2
three 3
four 4
five 5
df2 = DataFrame([['a'],['b'],['c'],['d'],['e']], index=['one','too','three','fours','five'], columns=['letter'])
letter
one a
too b
three c
fours d
five e
Then I want to get the resulting DataFrame
number letter
one 1 a
two 2 b
three 3 c
four 4 d
five 5 e
Similar to #locojay suggestion, you can apply difflib's get_close_matches to df2's index and then apply a join:
In [23]: import difflib
In [24]: difflib.get_close_matches
Out[24]: <function difflib.get_close_matches>
In [25]: df2.index = df2.index.map(lambda x: difflib.get_close_matches(x, df1.index)[0])
In [26]: df2
Out[26]:
letter
one a
two b
three c
four d
five e
In [31]: df1.join(df2)
Out[31]:
number letter
one 1 a
two 2 b
three 3 c
four 4 d
five 5 e
.
If these were columns, in the same vein you could apply to the column then merge:
df1 = DataFrame([[1,'one'],[2,'two'],[3,'three'],[4,'four'],[5,'five']], columns=['number', 'name'])
df2 = DataFrame([['a','one'],['b','too'],['c','three'],['d','fours'],['e','five']], columns=['letter', 'name'])
df2['name'] = df2['name'].apply(lambda x: difflib.get_close_matches(x, df1['name'])[0])
df1.merge(df2)
Using fuzzywuzzy
Since there are no examples with the fuzzywuzzy package, here's a function I wrote which will return all matches based on a threshold you can set as a user:
Example datframe
df1 = pd.DataFrame({'Key':['Apple', 'Banana', 'Orange', 'Strawberry']})
df2 = pd.DataFrame({'Key':['Aple', 'Mango', 'Orag', 'Straw', 'Bannanna', 'Berry']})
# df1
Key
0 Apple
1 Banana
2 Orange
3 Strawberry
# df2
Key
0 Aple
1 Mango
2 Orag
3 Straw
4 Bannanna
5 Berry
Function for fuzzy matching
def fuzzy_merge(df_1, df_2, key1, key2, threshold=90, limit=2):
"""
:param df_1: the left table to join
:param df_2: the right table to join
:param key1: key column of the left table
:param key2: key column of the right table
:param threshold: how close the matches should be to return a match, based on Levenshtein distance
:param limit: the amount of matches that will get returned, these are sorted high to low
:return: dataframe with boths keys and matches
"""
s = df_2[key2].tolist()
m = df_1[key1].apply(lambda x: process.extract(x, s, limit=limit))
df_1['matches'] = m
m2 = df_1['matches'].apply(lambda x: ', '.join([i[0] for i in x if i[1] >= threshold]))
df_1['matches'] = m2
return df_1
Using our function on the dataframes: #1
from fuzzywuzzy import fuzz
from fuzzywuzzy import process
fuzzy_merge(df1, df2, 'Key', 'Key', threshold=80)
Key matches
0 Apple Aple
1 Banana Bannanna
2 Orange Orag
3 Strawberry Straw, Berry
Using our function on the dataframes: #2
df1 = pd.DataFrame({'Col1':['Microsoft', 'Google', 'Amazon', 'IBM']})
df2 = pd.DataFrame({'Col2':['Mcrsoft', 'gogle', 'Amason', 'BIM']})
fuzzy_merge(df1, df2, 'Col1', 'Col2', 80)
Col1 matches
0 Microsoft Mcrsoft
1 Google gogle
2 Amazon Amason
3 IBM
Installation:
Pip
pip install fuzzywuzzy
Anaconda
conda install -c conda-forge fuzzywuzzy
I have written a Python package which aims to solve this problem:
pip install fuzzymatcher
You can find the repo here and docs here.
Basic usage:
Given two dataframes df_left and df_right, which you want to fuzzy join, you can write the following:
from fuzzymatcher import link_table, fuzzy_left_join
# Columns to match on from df_left
left_on = ["fname", "mname", "lname", "dob"]
# Columns to match on from df_right
right_on = ["name", "middlename", "surname", "date"]
# The link table potentially contains several matches for each record
fuzzymatcher.link_table(df_left, df_right, left_on, right_on)
Or if you just want to link on the closest match:
fuzzymatcher.fuzzy_left_join(df_left, df_right, left_on, right_on)
I would use Jaro-Winkler, because it is one of the most performant and accurate approximate string matching algorithms currently available [Cohen, et al.], [Winkler].
This is how I would do it with Jaro-Winkler from the jellyfish package:
def get_closest_match(x, list_strings):
best_match = None
highest_jw = 0
for current_string in list_strings:
current_score = jellyfish.jaro_winkler(x, current_string)
if(current_score > highest_jw):
highest_jw = current_score
best_match = current_string
return best_match
df1 = pandas.DataFrame([[1],[2],[3],[4],[5]], index=['one','two','three','four','five'], columns=['number'])
df2 = pandas.DataFrame([['a'],['b'],['c'],['d'],['e']], index=['one','too','three','fours','five'], columns=['letter'])
df2.index = df2.index.map(lambda x: get_closest_match(x, df1.index))
df1.join(df2)
Output:
number letter
one 1 a
two 2 b
three 3 c
four 4 d
five 5 e
For a general approach: fuzzy_merge
For a more general scenario in which we want to merge columns from two dataframes which contain slightly different strings, the following function uses difflib.get_close_matches along with merge in order to mimic the functionality of pandas' merge but with fuzzy matching:
import difflib
def fuzzy_merge(df1, df2, left_on, right_on, how='inner', cutoff=0.6):
df_other= df2.copy()
df_other[left_on] = [get_closest_match(x, df1[left_on], cutoff)
for x in df_other[right_on]]
return df1.merge(df_other, on=left_on, how=how)
def get_closest_match(x, other, cutoff):
matches = difflib.get_close_matches(x, other, cutoff=cutoff)
return matches[0] if matches else None
Here are some use cases with two sample dataframes:
print(df1)
key number
0 one 1
1 two 2
2 three 3
3 four 4
4 five 5
print(df2)
key_close letter
0 three c
1 one a
2 too b
3 fours d
4 a very different string e
With the above example, we'd get:
fuzzy_merge(df1, df2, left_on='key', right_on='key_close')
key number key_close letter
0 one 1 one a
1 two 2 too b
2 three 3 three c
3 four 4 fours d
And we could do a left join with:
fuzzy_merge(df1, df2, left_on='key', right_on='key_close', how='left')
key number key_close letter
0 one 1 one a
1 two 2 too b
2 three 3 three c
3 four 4 fours d
4 five 5 NaN NaN
For a right join, we'd have all non-matching keys in the left dataframe to None:
fuzzy_merge(df1, df2, left_on='key', right_on='key_close', how='right')
key number key_close letter
0 one 1.0 one a
1 two 2.0 too b
2 three 3.0 three c
3 four 4.0 fours d
4 None NaN a very different string e
Also note that difflib.get_close_matches will return an empty list if no item is matched within the cutoff. In the shared example, if we change the last index in df2 to say:
print(df2)
letter
one a
too b
three c
fours d
a very different string e
We'd get an index out of range error:
df2.index.map(lambda x: difflib.get_close_matches(x, df1.index)[0])
IndexError: list index out of range
In order to solve this the above function get_closest_match will return the closest match by indexing the list returned by difflib.get_close_matches only if it actually contains any matches.
http://pandas.pydata.org/pandas-docs/dev/merging.html does not have a hook function to do this on the fly. Would be nice though...
I would just do a separate step and use difflib getclosest_matches to create a new column in one of the 2 dataframes and the merge/join on the fuzzy matched column
I used Fuzzymatcher package and this worked well for me. Visit this link for more details on this.
use the below command to install
pip install fuzzymatcher
Below is the sample Code (already submitted by RobinL above)
from fuzzymatcher import link_table, fuzzy_left_join
# Columns to match on from df_left
left_on = ["fname", "mname", "lname", "dob"]
# Columns to match on from df_right
right_on = ["name", "middlename", "surname", "date"]
# The link table potentially contains several matches for each record
fuzzymatcher.link_table(df_left, df_right, left_on, right_on)
Errors you may get
ZeroDivisionError: float division by zero---> Refer to this
link to resolve it
OperationalError: No Such Module:fts4 --> downlaod the sqlite3.dll
from here and replace the DLL file in your python or anaconda
DLLs folder.
Pros :
Works faster. In my case, I compared one dataframe with 3000 rows with anohter dataframe with 170,000 records . This also uses SQLite3 search across text. So faster than many
Can check across multiple columns and 2 dataframes. In my case, I was looking for closest match based on address and company name. Sometimes, company name might be same but address is the good thing to check too.
Gives you score for all the closest matches for the same record. you choose whats the cutoff score.
cons:
Original package installation is buggy
Required C++ and visual studios installed too
Wont work for 64 bit anaconda/Python
There is a package called fuzzy_pandas that can use levenshtein, jaro, metaphone and bilenco methods. With some great examples here
import pandas as pd
import fuzzy_pandas as fpd
df1 = pd.DataFrame({'Key':['Apple', 'Banana', 'Orange', 'Strawberry']})
df2 = pd.DataFrame({'Key':['Aple', 'Mango', 'Orag', 'Straw', 'Bannanna', 'Berry']})
results = fpd.fuzzy_merge(df1, df2,
left_on='Key',
right_on='Key',
method='levenshtein',
threshold=0.6)
results.head()
Key Key
0 Apple Aple
1 Banana Bannanna
2 Orange Orag
As a heads up, this basically works, except if no match is found, or if you have NaNs in either column. Instead of directly applying get_close_matches, I found it easier to apply the following function. The choice of NaN replacements will depend a lot on your dataset.
def fuzzy_match(a, b):
left = '1' if pd.isnull(a) else a
right = b.fillna('2')
out = difflib.get_close_matches(left, right)
return out[0] if out else np.NaN
You can use d6tjoin for that
import d6tjoin.top1
d6tjoin.top1.MergeTop1(df1.reset_index(),df2.reset_index(),
fuzzy_left_on=['index'],fuzzy_right_on=['index']).merge()['merged']
index number index_right letter
0 one 1 one a
1 two 2 too b
2 three 3 three c
3 four 4 fours d
4 five 5 five e
It has a variety of additional features such as:
check join quality, pre and post join
customize similarity function, eg edit distance vs hamming distance
specify max distance
multi-core compute
For details see
MergeTop1 examples - Best match join examples notebook
PreJoin examples - Examples for diagnosing join problems
I have used fuzzywuzz in a very minimal way whilst matching the existing behaviour and keywords of merge in pandas.
Just specify your accepted threshold for matching (between 0 and 100):
from fuzzywuzzy import process
def fuzzy_merge(df, df2, on=None, left_on=None, right_on=None, how='inner', threshold=80):
def fuzzy_apply(x, df, column, threshold=threshold):
if type(x)!=str:
return None
match, score, *_ = process.extract(x, df[column], limit=1)[0]
if score >= threshold:
return match
else:
return None
if on is not None:
left_on = on
right_on = on
# create temp column as the best fuzzy match (or None!)
df2['tmp'] = df2[right_on].apply(
fuzzy_apply,
df=df,
column=left_on,
threshold=threshold
)
merged_df = df.merge(df2, how=how, left_on=left_on, right_on='tmp')
del merged_df['tmp']
return merged_df
Try it out using the example data:
df1 = pd.DataFrame({'Key':['Apple', 'Banana', 'Orange', 'Strawberry']})
df2 = pd.DataFrame({'Key':['Aple', 'Mango', 'Orag', 'Straw', 'Bannanna', 'Berry']})
fuzzy_merge(df, df2, on='Key', threshold=80)
Using thefuzz
Using SeatGeek's great package thefuzz, which makes use of Levenshtein distance. This works with data held in columns. It adds matches as rows rather than columns, to preserve a tidy dataset, and allows additional columns to be easily pulled through to the output dataframe.
Sample data
df1 = pd.DataFrame({'col_a':['one','two','three','four','five'], 'col_b':[1, 2, 3, 4, 5]})
col_a col_b
0 one 1
1 two 2
2 three 3
3 four 4
4 five 5
df2 = pd.DataFrame({'col_a':['one','too','three','fours','five'], 'col_b':['a','b','c','d','e']})
col_a col_b
0 one a
1 too b
2 three c
3 fours d
4 five e
Function used to do the matching
def fuzzy_match(
df_left, df_right, column_left, column_right, threshold=90, limit=1
):
# Create a series
series_matches = df_left[column_left].apply(
lambda x: process.extract(x, df_right[column_right], limit=limit) # Creates a series with id from df_left and column name _column_left_, with _limit_ matches per item
)
# Convert matches to a tidy dataframe
df_matches = series_matches.to_frame()
df_matches = df_matches.explode(column_left) # Convert list of matches to rows
df_matches[
['match_string', 'match_score', 'df_right_id']
] = pd.DataFrame(df_matches[column_left].tolist(), index=df_matches.index) # Convert match tuple to columns
df_matches.drop(column_left, axis=1, inplace=True) # Drop column of match tuples
# Reset index, as in creating a tidy dataframe we've introduced multiple rows per id, so that no longer functions well as the index
if df_matches.index.name:
index_name = df_matches.index.name # Stash index name
else:
index_name = 'index' # Default used by pandas
df_matches.reset_index(inplace=True)
df_matches.rename(columns={index_name: 'df_left_id'}, inplace=True) # The previous index has now become a column: rename for ease of reference
# Drop matches below threshold
df_matches.drop(
df_matches.loc[df_matches['match_score'] < threshold].index,
inplace=True
)
return df_matches
Use function and merge data
import pandas as pd
from thefuzz import process
df_matches = fuzzy_match(
df1,
df2,
'col_a',
'col_a',
threshold=60,
limit=1
)
df_output = df1.merge(
df_matches,
how='left',
left_index=True,
right_on='df_left_id'
).merge(
df2,
how='left',
left_on='df_right_id',
right_index=True,
suffixes=['_df1', '_df2']
)
df_output.set_index('df_left_id', inplace=True) # For some reason the first merge operation wrecks the dataframe's index. Recreated from the value we have in the matches lookup table
df_output = df_output[['col_a_df1', 'col_b_df1', 'col_b_df2']] # Drop columns used in the matching
df_output.index.name = 'id'
id col_a_df1 col_b_df1 col_b_df2
0 one 1 a
1 two 2 b
2 three 3 c
3 four 4 d
4 five 5 e
Tip: Fuzzy matching using thefuzz is much quicker if you optionally install the python-Levenshtein package too.
For more complex use cases to match rows with many columns you can use recordlinkage package. recordlinkage provides all the tools to fuzzy match rows between pandas data frames which helps to deduplicate your data when merging. I have written a detailed article about the package here
if the join axis is numeric this could also be used to match indexes with a specified tolerance:
def fuzzy_left_join(df1, df2, tol=None):
index1 = df1.index.values
index2 = df2.index.values
diff = np.abs(index1.reshape((-1, 1)) - index2)
mask_j = np.argmin(diff, axis=1) # min. of each column
mask_i = np.arange(mask_j.shape[0])
df1_ = df1.iloc[mask_i]
df2_ = df2.iloc[mask_j]
if tol is not None:
mask = np.abs(df2_.index.values - df1_.index.values) <= tol
df1_ = df1_.loc[mask]
df2_ = df2_.loc[mask]
df2_.index = df1_.index
out = pd.concat([df1_, df2_], axis=1)
return out
TheFuzz is the new version of a fuzzywuzzy
In order to fuzzy-join string-elements in two big tables you can do this:
Use apply to go row by row
Use swifter to parallel, speed up and visualize default apply function (with colored progress bar)
Use OrderedDict from collections to get rid of duplicates in the output of merge and keep the initial order
Increase limit in thefuzz.process.extract to see more options for merge (stored in a list of tuples with % of similarity)
'*' You can use thefuzz.process.extractOne instead of thefuzz.process.extract to return just one best-matched item (without specifying any limit). However, be aware that several results could have same % of similarity and you will get only one of them.
'**' Somehow the swifter takes a minute or two before starting the actual apply. If you need to process small tables you can skip this step and just use progress_apply instead
from thefuzz import process
from collections import OrderedDict
import swifter
def match(x):
matches = process.extract(x, df1, limit=6)
matches = list(OrderedDict((x, True) for x in matches).keys())
print(f'{x:20} : {matches}')
return str(matches)
df1 = df['name'].values
df2['matches'] = df2['name'].swifter.apply(lambda x: match(x))

In a pandas dataframe column, remove last 4 digit if it's 2017

In a pandas dataframe, there is a column X, with numbers like 12342017, 23456782017, WC456123, ER2017124.
I want to remove the last four digit if it's '2017'
So, my desired output should be 1234,2345677,WC45612,ER2017124
Use Series.str.replace with $ for regex for end of string, also if possible mix numbers with strings first convert to strings:
df = pd.DataFrame({'X': ['12342017', '23456782017', 'WC456123', 'ER2017124']})
df['X'] = df['X'].astype(str).str.replace('2017$','')
print (df)
X
0 1234
1 2345678
2 WC456123
3 ER2017124

Code optimisation - comparing two datetime columns by month and creating a new column too slow

I am trying to create a new column in Pandas dataframe. If the other two date columns in my dataframe share the same month, then this new column should have 1 as a value, otherwise 0. Also, I need to check that ids match my other list of ids that I have saved previously in another place and mark those only with 1. I have some code but it is useless since I am dealing with almost a billion of rows.
my_list_of_ids = df[df.bool_column == 1].id.values
def my_func(date1, date2):
for id_ in df.id:
if id_ in my_list_of_ids:
if date1.month == date2.month:
my_var = 1
else:
my_var = 0
else:
my_var = 0
return my_var
df["new_column"] = df.progress_apply(lambda x: my_func(x['date1'], x['date2']), axis=1)
Been waiting for 30 minutes and still 0%. Any help is appreciated.
UPDATE (adding an example):
id | date1 | date2 | bool_column | new_column |
id1 2019-02-13 2019-04-11 1 0
id1 2019-03-15 2019-04-11 0 0
id1 2019-04-23 2019-04-11 0 1
id2 2019-08-22 2019-08-11 1 1
id2 ....
id3 2019-09-01 2019-09-30 1 1
.
.
.
What I need to do is save the ids that are 1 in my bool_column, then I am looping through all of the ids in my dataframe and checking if they are in the previously created list (= 1). Then I want to compare month and the year of date1 and date2 columns and if they are the same, create a new_column with a value 1 where they mach, otherwise, 0.
The pandas way to do this is
mask = ((df['date1'].month == df['date2'].month) & (df['id'].isin(my_list_of_ids)))
df['new_column'] = mask.replace({False: 0, True: 1})
Since you have a large data-set, this will take time, but should be faster than using apply
The best way to deal with the month match is to use vectorization in pandas and do this:
new_column = (df.date1.dt.month == df.date2.dt.month).astype(int)
That is, avoid using apply() over the DataFrame (which will probably be iterative) and take advantage of the underlying numpy vectorization. The gateway to such functionality is almost always in families of Series functions and properties, like the dt family for dates, str family for strings, and so forth.
Luckily, you have pre-computed the id_list membership in your bool_column, so to add membership as a criterion, just do this:
new_column = ((df.date1.dt.month == df.date2.dt.month) & df.bool_column).astype(int)
Once again, the & of two Series takes advantage of vectorization. You stay inside boolean space till the end, then cast to int with astype(int). Reviewing your code, it occurs to me that the iterative checking of your id_list may be the real performance hit here, even more so than the DataFrame.apply(). Whatever you do, avoid at all costs iterating your id_list at each row, since you already have a vector denoting membership in your bool_column.
By the way I believe there's a tiny error in your example data, the new_column value for your third row should be 0, since your bool_column value there is 0.

Can you use the pandas df.str.replace() function for multiple values?

I'm using the pandas df.str.replace() function and would like to remove multiple characters from the string.
I'm trying to clean up some transaction data in a CSV file using pandas. I have a column that is storing the amount of the transaction as an Object data type. Before I can change it to a float datatype, I need to remove the $ character and any , characters from numbers greater than 999.99. I've been able to do this one at a time; however, I'd like to know if I can pass in multiple values to clean it up.
2 8/20/2019 Utah Valley Univ UTAH VALLEY UNIV UVU PMT 1 908191 4,825.50
df['Amount'] = df['Amount'].str.replace(r',','').astype(float)
I'd like to remove the '$' and the ',' character at the same time if possible.
Taking liberty to borrow the DataFrame from #Ian>
There is another way of doing it with replace method and withng replace using dict method to replace multiple value across the column..
>>> df
amount
0 $25,000
1 $13,000
2 $65,000
3 $19,000
4 $15,000
It will simple remove the $ sign and comma with null '' values .
>>> df['amount'].replace({'\$': '', ',': ''}, regex=True)
0 25000
1 13000
2 65000
3 19000
4 15000
Name: amount, dtype: object
Just to convert value to float use astype..
>>> df['amount'].replace({'\$': '', ',': ''}, regex=True).astype(float)
0 25000.0
1 13000.0
2 65000.0
3 19000.0
4 15000.0
Name: amount, dtype: float64
Going to steal #political scientist's comment and make it an answer with a little explanation.
Using some fake data:
import pandas as pd
import numpy as np
np.random.seed(1)
df = pd.DataFrame(np.random.randint(5, 100, size=(5,)), columns=['amount']).applymap(str)
df.amount = '$' + df.amount + ',' + '000'
print(df)
amount
0 $42,000
1 $17,000
2 $77,000
3 $14,000
4 $80,000
We have $ and , in our amount column. Using
df.amount.str.replace(r'\$|\,', '').astype(float)
We get
0 42000.0
1 17000.0
2 77000.0
3 14000.0
4 80000.0
Name: amount, dtype: float64
Why? By default the .str.replace() method has the parameter regex=True which means it accepts regular expressions for pattern matching.
The r at the front of the string tells the code to read the string as "raw"
\$ says to look for a dollar sign
| is the symbol for or
\, says to look for a comma
Using the | between the \$ and the \, (without a space!) means to look for either and replace them both with what is present at the second parameter in the method (aka repl)
Here is a cheat sheet I found that explains other regex characters and how to use them: Regex tutorial — A quick cheatsheet by examples

Resources