I am trying to display the physical quantity of each vertex in the mesh by paraview.
The ranges of the physical quantity ranges from positive to negative.
I want to display both positive and negative values in log scale in paraview in the same way as proposed by Alan in 2014.
That is
I propose that we find maxVal = max(maximum, abs(minimum)). Then, we set the color bar to run from maxVal to -maxVal. We log scale the top half of the color legend, running from maxVal to maxVal*10^-4, and we reverse log scale the bottom half of the color legend, running from -maxVal*10^-4 to -maxVal.
(As he said -4 is an arbitrary parameter.)
One question is that
I think this proposal has not implemented in paraview(I use version 5.2),
is it right?
And another question is that is there a way to draw colors as Alan proposed in paraview?
It has not been implemented as of ParaView 5.4, and it is currently not possible to achieve that coloring.
Related
I have to find the nearest color. For example, I have two colors colorA1, colorA2 which are nearly same color. And also I have other color colorB1.
And I need such a method:
Color getNearestColor(colorA1, colorA2, colorB1). This method should give me the colorB2 which is calculated by using the difference of colorA1 and colorA2, then using their distance it should give me colorB2 which has the same distance as in colorA1 and colorA2.
Can you give some ideas how to implement it?
To find the nearest colour, you need a definition of "near", so a metric.
In Wikipedia you will find different metrics of color differences.
Personally I would use the 2*R*R + 4*G*G + 3*B*B. (no need for square roots, you will just compare same metrics). Easy to calculate, you can use just integers (if you use 32 bit integers, you will have no overflow).
Then find which colour has the smallest differences between your target colour.
The other methods are more precise, but in that case "RGB" is not enough. You need to know which colour space are using (probably you are in sRGB).
Is there a dataset that maps each of the ~16M RGB or hex color values to a general color family/category - e.g. red, purple, orange, beige, brown, etc. - that I could access programmatically or load into a database or JSON document to cross-refence the color codes against? The use case is to classify the results of PIL color detection of swatch files into a small set of color pickers for a shopping site. It would also work if the mapping is a bit more granular, say 100-200 categories, since it would be easy enough to map those to my target 10-15 myself. I have some knowledge of kNN classification and will work with that if I have to, but it would be so much easier to use a static mapping if one already exists.
You can use a table such as the one in X11
http://www.astrouw.edu.pl/~jskowron/colors-x11/rgb.html
In order to find color proximity, it's best to transform the colors to Lab color space first, so that euclidean distances have more meaning, and then nearest neighbor would give good results.
You could convert from RGB to CIE Lab color space wherein Euclidian distance between two color selections is perceptually more meaningful. Here is the link to all relevant color space transformation formulae used in OpenCV's color conversion method (cvtColor): http://docs.opencv.org/modules/imgproc/doc/miscellaneous_transformations.html
Since your use case is to compare two swatches, I would advise you to use texture descriptors (http://www.robots.ox.ac.uk/~vgg/research/texclass/with.html) in addition to color information for better results.
I have an image and I am picking colors by RGB (data sampling). I select N points from a specific region in the image which has the "same" color. By "same" I mean, that part of the image belongs to an object, (let's say a yellow object). Each picked point in the RGB case has three values [R,G,B]. For example: [120,150,225]. And the maximum and minimum for each field are 255 and 0 respectively.
Let's assume that I picked N points from the region of the object in the image. The points obviously have different RGB values but from the same family (a gradient of the specific color).
Question:
I want to find a range for each RGB field that when I apply a color filter on the image the pixels related to that specific object remain (to be considered as inliers). Is it correct to find the maximum and minimum from the sampled points and consider them as the filter range? For example if the max and min of the field R are 120 ,170 respectively, can it be used as a the range that should be kept.
In my opinion, the idea is not true. Because when choosing the max and min of a set of sampled data some points will be out of that range and also there will be some point on the object that doesn't fit in this range.
What is a better solution to include more points as inliers?
If anybody needs to see collected data samples, please let me know.
I am not sure I fully grasp what you are asking for, but in my opinion filtering in RGB is not the way to go. You should use a different color space than RGB if you want to compare pixels of similar color. RGB is good for representing colors on a screen, but you actually want to look at the hue, saturation and intensity (lightness, or luminance) for analysing visible similarities in colors.
For example, you should convert your pixels to HSI or HSL color space first, then compare the different parameters you get. At that point, it is more natural to compare the resulting hue in a hue range, saturation in a saturation range, and so on.
Go here for further information on how to convert to and from RGB.
What happens here is that you implicitly try to reinvent either color indexing or histogram back-projection. You call it color filter but it is better to focus on probabilities than on colors and color spaces. Colors of course not super reliable and change with lighting (though hue tends to stay the same given non-colored illumination) that's why some color spaces are better than others. You can handle this separately but it seems that you are more interested in the principles of calculating "filtering operation" that will do segmentation of the foreground object from background. Hopefully.
In short, a histogram back-projection works by first creating a histogram for R, G, B within object area and then back-projecting them into the image in the following way. For each pixel in the image find its bin in the histogram, calculate its relative weight (probability) given overall sum of the bins and put this probability into the image. In such a way each pixel would have probability that it belongs to the object. You can improve it by dividing with probability of background if you want to model background too.
The result will be messy but somewhat resemble an object segment plus some background noise. It has to be cleaned and then reconnected into object using separate methods such as connected components, grab cut, morphological operation, blur, etc.
I'm trying to make a bar with gradient color updownward, I set 3 points as stated in the bar. Now the picture seems good, but I don't know how to automatically generate these color mathematically, by RGB or HSB? I'm having trouble with the rule of this kind of art thing.
I was intending to do it with RGB but I found it hard to do. But with HSB, I changed "S" and it makes a little sense as shown in picture.
My question is: How to calculate these three colors based on ONE given color, makes the gradient natural?
Thanks in advance, this has nothing to do with code but I think it definitely has a mathematical solution(formula).
I think there's no general rule for how to do this and different possibilities to get to a (subjectively pleasing) result.
I copied your colors here for analysis but didn't find a pattern in your choice. My solution would be to find a pleasing distance of (relative) luminance. To adabt to your example I chose one arbitrary color, then increased the Lum value by 18% for the second color and for the third one I subtracted 10% Lum again.
Do you like this solution?
I have more then 1 week reading about selective color change of an image. It meand selcting a color from a color picker and then select a part of image in which I want to change the color and apply the changing of color form original color to color of color picker.
E.g. if I select a blue color in color picker and I also select a red part in the image I should be able to change red color to blue color in all the image.
Another example. If I have an image with red apples and oranges and if I select an apple on the image and a blue color in the color picket, then all apples should be changing the color from red to blue.
I have some ideas but of course I need something more concrete on how to do this
Thank you for reading
As a starting point, consider clustering the colors of your image. If you don't know how many clusters you want, then you will need methods to determine whether to merge or not two given clusters. For the moment, let us suppose that we know that number. For example, given the following image at left, I mapped its colors to 3 clusters, which have the mean colors as shown in the middle, and representing each cluster by its mean color gives the figure at right.
With the output at right, now what you need is a method to replace colors. Suppose the user clicks (a single point) somewhere in your image, then you know the positions in the original image that you will need to modify. For the next image, the user (me) clicked on a point that is contained by the "orange" cluster. Then he clicked on some blue hue. From that, you make a mask representing the points in the "orange" cluster and play with that. I considered a simple gaussian filter followed by a flat dilation 3x5. Then you replace the hues in the original image according to the produced mask (after the low pass filtering, the values on it are also considered as a alpha value for compositing the images).
Not perfect at all, but you could have a better clustering than me and also a much-less-primitive color replacement method. I intentionally skipped the details about clustering method, color space, and others, because I used only basic k-means on RGB without any pre-processing of the input. So you can consider the results above as a baseline for anything else you can do.
Given the image, a selected color, and a target new color - you can't do much that isn't ugly. You also need a range, some amount of variation in color, so you can say one pixel's color is "close enough" while another is clearly "different".
First step of processing: You create a mask image, which is grayscale and varying from 0.0 to 1.0 (or from zero to some maximum value we'll treat as 1.0), and the same size as the input image. For each input pixel, test if its color is sufficiently near the selected color. If it's "the same" or "close enough" put 1.0 in the mask. If it's different, put 0.0. If is sorta borderline, put an in-between value. Exactly how to do this depends on the details of the image.
This might work best in LAB space, and testing for sameness according to the angle of the A,B coordinates relative to their origin.
Once you have the mask, put it aside. Now color-transform the whole image. This might be best done in HSV space. Don't touch the V channel. Add a constant to S, modulo 360deg (or mod 256, if S is stored as bytes) and multiply S by a constant chosen so that the coordinates in HSV corresponding to the selected color is moved to the HSV coordinates for the target color. Convert the transformed S and H, with the unchanged L, back to RGB.
Finally, use the mask to blend the original image with the color-transformed one. Apply this to each channel - red, green, blue:
output = (1-mask)*original + mask*transformed
If you're doing it all in byte arrays, 0 is 0.0 and 255 is 1.0, and be careful of overflow and signed/unsigned problems.