QTcpSocket and QTimer for automatic reconnection best practice - multithreading

we are trying to implement an application which retrieves data from multiple servers, so we need several QTcpSocket instances in order to manage the connections for each host.
We are facing some decisional "design" problems:
should we implement a multi-threading solution to reach the goal? (probably yes)
if Yes, should we use a "worker thread" ( e.g as in the QThread example moveToThread(socket_) ) as best solution or there are better ? We need to manage three or more connections simultaneously, so we cannot use waitingForConnection(...) because is a blocking function (from what we understand)
what is the best practice for QTcpSocket reconnection? Maybe a QTimer, but what is the best way to use it...?
Thank you in advance!
AD

Well, I had some design questions just like these, but in my case the main reason was to avoid my connection timing to be delayed by the heavy GUI processing, also, my communication system is thru serial, but apart from it, I think that my model fits pretty well in your case, here is the way i designed it, my questions, and the answers from UmNyobe:
QT QThread with QTimer and QSerial - parenting
Basically, each new instance of my "CommCore" class creates its own Serial, Timer and Thread, and transfers itself and it's children to this Thread, avoiding that the GUI processing interferes in the communication timing.

Related

PyQt5 : are pyqtSignals thread safe?

I am learning how to use PyQt5 and there are quite a few points that elude me.
I have started implementing QThreads to replace the threads I have been using in my UI as I realised that mixing threads and QThreads could possibly lead to issues later and have started using pyqtSignal simultaneously
So far I have seen that the pyqtSygnal needs to be implemented on a class level to be able to work ( putting it in a class constructor does not work )
In the architecture I use currently, I have a pyqtSignal that is instantiated in the main thread and is then used by all of the child threads. This is due to having one class that is responsible for my logs of all the program.
I am unsure if this is a good implementation or not.
Here are my questions :
are pyqtSignals thread safe ?I know that they use a queue system to be thread safe but is the emit() method itself thread safe ? My understanding of them is a bit limited
Do I need to protect my pyqtSignals with locks ?
Can I have multiple different signals emitting to the same slot without having any issues ?
The signals are one of the few elements of the QObjects that are thread-safe so it is not necessary to protect the data. So you can have different types of signals connected to the same slot.
Since the signals are thread-safe then Qt recommended to communicate QObjects that live in different threads.

multithreading and user interface

Ok, here we go.
recently I got fond of HCI topics on interface design.
I found out that there could be some way to implement a multithread interface in case for reducing the delay of system respons.
Morover. this may also be possible to say that designing a user interface has tight relationship with STD.
therefore, I wonder if there is any method or techniques to find independant part of ,say,a given STD of a UI that can be seen as threads?
A multi threaded interface in most cases is not fundamentally different to it's single threaded counterpart. There is still a single thread listening on interface events and it will still run handlers as events happen. However the difference comes down to what is contained in these handlers. A simple single threaded event loop would look as below:
A multi-threaded UI is a little different but the principal is the same:
Effectively long processes which are initiated in worker threads which can then report back to them main UI thread so it can report completion.
In relation to a State Transition Diagram, multi-threading complicates things somewhat however there a number of ways to still accomplish this. The first is to simply map each (potential) thread's path separately, this requires decisions for if any threads are finished at the points the main thread checks. It is also possible to use a thread state transition diagram which can demonstrate many threads in a single diagram but is sometimes harder to parse.
Now regarding using a state transition diagram to help implement threading in a user interface program you simply have to locate tasks between the event handler and returning to listening which are time consuming and likely to block. You then need to dispatch these tasks as a thread, optionally adding a completion callback in the main thread.
If I have missed anything please comment below, otherwise I hope this is helpful.

Interthread communication

The following question is about the unity game engine, but it could relate to any program trying to send data to a main thread, such as the UI thread.
I am processing some data on a separate thread (position data a read asyncrously from a socket). However, I need to act on this data on the main thread (a game object's transform can only be accessed from the main thread). The approach I have in mind is to create a thread-safe queue and follow the producer-consumer pattern. The thread would queue the position data and the main thread would deque the data and act on it. *Note: In Unity I do not have access to the System.Windows.Threading name space so I can not use Dispatcher. Also, it requires .Net 3.5 so I can't use the Collections.Concurrent name space either.
Is there a better approach?
If there isn't, what is the best way to inform the main thread when data is queued? It seems inefficient to poll, but I can't think of any way around it..
Thanks in advance.
That is a totally viable approach to threading. As you probably know, the alternative to polling found in computer hardware is the concept of interrupts.
How would you simulate interrupts in a multithreaded high-level computer program? Hard to say - your thread that changes would have to notify the UI thread "hey I'm ready", rather than the UI thread checking constantly. This requires some sort of message passing, really - it may not be feasible.
That being said, the typical game-design approach is the "game loop" that does, essentially, poll. So there is no shame in that game - you just have to make sure it doesn't murder your performance.
May be this question has an answer for you.
However, polling a queue is a cleaner solution IMHO, and not so costly if done right and there are tons of examples in the Internet.

Multiple UI threads on the same window

I don't want multiple windows, each with its own UI thread, nor events raised on a single UI thread, not background workers and notifications, none of that Invoke, BeginInvoke stuff either.
I'm interested in a platform that allows multiple threads to update the same window in a safe manner. Something like first thread creates three buttons, the second thread another five, and they both can access them,change their properties and delete them without any unwanted consequences.
I want safe multi-threaded access to the UI without Invoking, a platform where the UI objects can be accessed directly from any thread without raising errors like "The object can only be accessed from the thread that created it". To let me do the synchronizing if I have to, not prevent me from cross-tread accessing the UI in a direct manner.
I'm gonna get down voted but ... Go Go Gadget Soapbox.
Multi threaded GUI are not possible in the general case. It has been attempted time and time again and it never comes out well. It is not a coincidence that all of the major windowing frameworks follow the single threaded ui model. They weren't copying each other, it's just that the constraints of the problem lead them to the same answer. Many people smarter than you or i have tried to solve this.
It might be possible to implement a multi-thread ui for a particular project. I'm only saying that it can't be done in the general case. That means it's unlikely you'll find a framework to do what you want.
The gist of the problem is this. Envision the gui components as a chain (in reality it's more like a tree, but a chain is simple to describe). The button connects to the frame, connects to the box, connects to the window. There are two source of events for a gui the system/OS and the user. The system/OS event originate at the bottom of the chain (the windowing system), the user event originate at the top of the chain (the button). Both of these events must move through the gui chain. If two threads are pushing these events simultaneously they must be mutex protected. However, there is no known algorithm for concurrently traversing a double linked list in both directions. It is prone to dead lock. GUI experts tried and tried to figure out ways to get around the deadlocking problem, and eventually arrived at the solution we use today called Model/View/Controller, aka one thread runs the UI.
You could make a thread-safe Producer/Consumer queue of delegates.
Any thread that wants to update a UI component would create a delegate encapsulating the operations to be performed, and add it to the queue.
The UI thread (assuming all components were created on the same thread) would then periodically pull an item from the queue, and execute the delegate.
I don't believe a platform like that exists per se
There is nothing stopping you from saying taking .Net and creating all new controls which are thread safe and can work like that(or maybe just the subset of what you need) which shouldn't be an extremely large job(though definitely no small job) because you can just derive from the base controls and override any thread-unsafe methods or properties.
The real question though is why? It would definitely be slower because of all the locking. Say your in one thread that is doing something with the UI, well it has to lock the window it's working on else it could be changed without it knowing by the other thread. So with all the locking, you will spend most of your drawing time and such waiting on locks and (expensive) context switches from threads. You could maybe make it async, but that just doesn't seem safe(and probably isn't) because controls that you supposedly just created may or may not exist and would be about like
Panel p=new Panel();
Button b=new Button();
WaitForControlsCreated(); //waits until the current control queue is cleared
p.Controls.Add(b);
which is probably just as slow..
So the real question here is why? The only "good" way of doing it is just having an invoke abstracted away so that it appears you can add controls from a non-UI thread.
I think you are misunderstanding how threads really work and what it takes to actually make an object thread safe
Accept that any code updating the GUI has to be on the GUI thread.
Learn to use BeginInvoke().
On Windows, Window handles have thread affinity. This is a limitation of the Window manager. It's a bad idea to have multiple threads accessing the same window on Windows.
I'm surprised to see these answers.
Only the higher level language frameworks like C# have thread restrictions on GUI elements.
Windows, at the SDK layer, is 100% application controlled and there are no restrictions on threads except at insignificant nitty gritty level. For example if multiple threads want to write to a window, you need to lock on a mutex, get the device context, draw, then release the context, then unlock the mutex. Getting and releasing a device context for a moment of drawing needs to be on the same thread... but those are typically within 10 lines of code from each other.
There isn't even a dedicated thread that windows messages come down on, whatever thread calls "DispatchMessage()" is the thread the WINPROC will be called on.
Another minor thread restriction is that you can only "PeekMessage" or "GetMessage" a window that was created on the current thread. But really this is very minor, and how many message pumps do you need anyway.
Drawing is completely disconnected from threads in Windows, just mutex your DC's for drawing. You can draw anytime, from anywhere, not just on a WM_PAINT message.
BeOS / Haiku OS
Based on my guessing of your requirement, you want a single Windows Form and having ways to execute certain routines asynchronously (like multi-threading), yes?
Typically (for the case of .NET WinForms) Control.Invoke / Control.BeginInvoke is used to a certain effect what I think you want.
Here's an interesting article which might help: http://www.yoda.arachsys.com/csharp/threads/winforms.shtml

Threads or asynch?

How do you make your application multithreaded ?
Do you use asynch functions ?
or do you spawn a new thread ?
I think that asynch functions are already spawning a thread so if your job is doing just some file reading, being lazy and just spawning your job on a thread would just "waste" ressources...
So is there some kind of design when using thread or asynch functions ?
If you are talking about .Net, then don't forget the ThreadPool. The thread pool is also what asynch functions often use. Spawning to much threads can actually hurt your performance. A thread pool is designed to spawn just enough threads to do the work the fastest. So do use a thread pool instead of spwaning your own threads, unless the thread pool doesn't meet your needs.
PS: And keep an eye out on the Parallel Extensions from Microsoft
Spawning threads is only going to waste resources if you start spawning tons of them, one or two extra threads isn't going to effect the platforms proformance, infact System currently has over 70 threads for me, and msn is using 32 (I really have no idea how a messenger can use that many threads, exspecialy when its minimised and not really doing anything...)
Useualy a good time to spawn a thread is when something will take a long time, but you need to keep doing something else.
eg say a calculation will take 30 seconds. The best thing to do is spawn a new thread for the calculation, so that you can continue to update the screen, and handle any user input because users will hate it if your app freezes untill its finished doing the calculation.
On the other hand, creating threads to do something that can be done almost instantly is nearly pointless, since the overhead of creating (or even just passing work to an existing thread using a thread pool) will be higher than just doing the job in the first place.
Sometimes you can break your app into a couple of seprate parts which run in their own threads. For example in games the updates/physics etc may be one thread, while grahpics are another, sound/music is a third, and networking is another. The problem here is you really have to think about how these parts will interact or else you may have worse proformance, bugs that happen seemingly "randomly", or it may even deadlock.
I'll second Fire Lancer's answer - creating your own threads is an excellent way to process big tasks or to handle a task that would otherwise be "blocking" to the rest of synchronous app, but you have to have a clear understanding of the problem that you must solve and develope in a way that clearly defines the task of a thread, and limits the scope of what it does.
For an example I recently worked on - a Java console app runs periodically to capture data by essentially screen-scraping urls, parsing the document with DOM, extracting data and storing it in a database.
As a single threaded application, it, as you would expect, took an age, averaging around 1 url a second for a 50kb page. Not too bad, but when you scale out to needing to processes thousands of urls in a batch, it's no good.
Profiling the app showed that most of the time the active thread was idle - it was waiting for I/O operations - opening of a socket to the remote URL, opening a connection to the database etc. It's this sort of situation that can easily be improved with multithreading. Rewriting to be multi-threaded and with just 5 threads instead of one, even on a single core cpu, gave an increase in throughput of over 20 times.
In this example, each "worker" thread was explicitly limited to what it did - open the remote a remote url, parse the data, store it in the db. All the "high level" processing - generating the list of urls to parse, working out which next, handling errors, all remained with the control of the main thread.
The use of threads makes you think more about the way your application needs threading and can in the long run make it easier to improve / control your performance.
Async methods are faster to use but they are a bit magic - a lot of things happen to make them possible - so it's probable that at some point you will need something that they can't give you. Then you can try and roll some custom threading code.
It all depends on your needs.
The answer is "it depends".
It depends on what you're trying to achieve. I'm going to assume that you're aiming for more performance.
The simplest solution is to find another way to improve your performance. Run a profiler. Look for hot spots. Reduce unnecessary IO.
The next solution is to break your program into multiple processes, each of which can run in their own address space. This is easiest because there is no chance of the individual processes messing each other up.
The next solution is to use threads. At this point you're opening a major can of worms, so start small, and only multi-thread the critical path of the code.
The next solution is to use asynch IO. Generally only recommended for people writing some of very heavily loaded server, and even then I would rather re-use one of the existing frameworks that abstract away the details e.g. the C++ framework ICE, or an EJB server under java.
Note that each of these solutions has multiple sub-solutions - there are different breeds of threads and different kinds of asynch IO, each with slightly different performance characteristics, but again, it's generally best to let the framework handle it for you.

Resources