How can I bind two IO () monads without executing them? - haskell

In the below code, I am using >> to concatenate IO actions together. But AFAIU, m1>>m2 gets de-sugared to m1>>=(\_.m2) and thus it is executing the first IO action right when it is binding. I want all printing to happen in the main, i.e. print statements should not get interleaved with the input statements ("Enter Code"). Since do doesn't allow me to return any other monad than IO like [IO ()]. How can I have the desired printing effect?
f :: [Int] -> IO ()
f inventory = do
putStrLn "Enter Code\n"
x <- getLine
let idx = nameToIndex x
putStrLn "Quantity\n"
y <- getLine
putStrLn "More?\n"
c <- getChar
let q = (read y :: Int)
let curM = if inventory !! idx >= q then (putStrLn "sdaf\n") else (putStrLn "Overflow!\n")
if c == 'Y' then curM>>(f (update inventory idx)) else curM
main = f [1, 2]

I'm not 100% sure I understand the problem, but I think it goes like this: you'd like to do some interactions with the user, storing up information about the interaction, then display all the information at once at the end of the entire interaction.
Here's a very simplified version of your code, that skips all the business logic and just keeps asking the user if they want to continue.
prompt = do
putStrLn "Continue?"
s <- getLine
case s of
"y" -> putStrLn "Okay, let's continue." >> prompt
_ -> return ()
main = prompt
I think the effect you're asking for is to delay the display of "Okay, let's continue." until the user has stopped hitting "y". That's no problem. There's lots of ways you can do this. The most flexible is to have prompt return the action it wants to be executed after it completes:
prompt = do
putStrLn "Continue?"
s <- getLine
case s of
"y" -> do
act <- prompt
return (putStrLn "Okay, let's continue." >> act)
_ -> return (return ())
main = do
act <- prompt
act
(There are combinators that can make this code more compact, as well.) But I don't like this design; it makes it difficult to introspect on the result of prompt. A more specialized but also more maintainable approach is to return some data describing the interaction, which the caller can then turn into an IO action summarizing things. In this case, a list of strings seems like a suitable description.
prompt = do
putStrLn "Continue?"
s <- getLine
case s of
"y" -> do
results <- prompt
return ("Okay, let's continue." : results)
_ -> return []
main = do
results <- prompt
mapM_ putStrLn results
Hopefully this explanation is clear enough that you can combine this idea with your more complicated business logic.

Related

Haskell parse error on input ‘<-’ Perhaps this statement should be within a 'do' block?

I'm learning Haskell and having a really hard time with this very simple program:
chooseDifficulty :: IO ()
chooseDifficulty =
do putStrLn "Choose your difficulty:"
putStrLn " 1: easy"
putStrLn " 2: medium"
putStrLn " 3: difficult"
let choice <- getLine
putStrLn "Choice was " ++ choice
main :: IO ()
main = chooseDifficulty
I'm having the error "parse error on input ‘<-’ Perhaps this statement should be within a 'do' block?" on line 7. I've tried all sorts of formatting but haven't been able to fix that since it's in a do block already.
Haskell's do syntax has the following features:
1.
do
...
action -- e.g. putStrLn "bla"
moreStuff
Simply executes the action (i.e. binding it into the monad), discards any results, and doesn't introduce new variables. Under the hood this uses the >> operator to sequence action before everything that comes afterwards, action >> moreStuff.
2.
do
...
let v = 37
moreStuff
This doesn't really have anything to do with monadic actions, it's just a slightly different way of writing the standard let:
do
...
let v = 37 in moreStuff
or
do
...
let v = 37
in do
moreStuff
Note that this only works with “pure values” like numbers; it would be no use to write something like let v = getLine because this wouldn't actually invoke the action, only give a new name to it.
3.
do
...
y <- resultfulAction -- e.g. getLine
moreStuff
No let in this one. This executes the action and binds its result in the variable y. Under the hood it uses the >>= operator, namely resultfulAction >>= \y -> moreStuff.

Haskell: How would I add input value from a function to a global list?

I am basically making a task manager where a user can add a task or print out all tasks entered.
my main function contains the options of what users do...
main = do
putStrLn "Below are the Options:\n\tadd\n\tprint\n\tsearch\nEnter Option:"
input <- getLine
if input == "add" then
buildList []
else if input == "print" then
putStrLn "printing"
else if input == "search" then
putStrLn "searching"
else
putStrLn "Please Enter add, print, search"
main
I am working on a function called buildList where the creation of the task happens:
buildList tasks = do
putStrLn "Enter a Task:"
input <- getLine
let mytask = input
putStrLn mytask --here to prevent an error
..and I assume I would need a global list since I will need it if I want to print out or search within it.
mytasklist = []
I have been stuck on this for a while as I am new to functional programming and Haskell. I understand that I can add two list together with ++ or just do : to add at the start of the list, but I cant seem to figure out how to achieve this without an error.
update1: so would something like this work?
buildList tasks = do
putStrLn "Enter a Task:"
input <- getLine
let updatedTasks = tasks ++ [input]
main
main = do
putStrLn "Below are the Options:\n\tadd\n\tprint\n\tsearch\nEnter Option:"
input <- getLine
if input == "add" then do
buildList []
else if input == "print" then
putStrLn "searchiwng"
else if input == "search" then
putStrLn "searching"
else
putStrLn "Please Enter add, print, search"
main
You need to rename your main function to something else, lets say go (seems to be the traditional name for this pattern) and pass your task list as a parameter to go. In the case of "add" the list you pass is the old list plus the new entry.
(Obviously this is a toy problem for learning, and this is a toy solution. Real programs have more sophisticated approaches. But this will do for now).
Here is a simpler example, where you can increase or print an integer.
You could try to adapt it to your task.
The trick is the recursive function loop, which calls itself with the updated integer.
main :: IO ()
main = do
let loop :: Int -> IO ()
loop n = do
putStrLn "print/inc/quit?"
opt <- getLine
case opt of
"print" -> do print n; loop n -- recurse with the same n
"inc" -> loop (n+1) -- recurse with updated n
"quit" -> putStrLn "bye!" -- don't recurse to stop
_ -> do putStrLn "invalid option, try again"; loop n
-- call loop prividing the intial value
loop 0
You can also make loop into a top-level function, and simply define main = loop 0, if you prefer.
There are, of course, several other more advanced options in Haskell to do this, but I'd recommend you start with the above basic approach.
When you are more familiar with the language, you could try the following alternative options:
the StateT Int IO monad allows IO operations and reading/writing to an Int state
IORefs can also be used to model mutable data

Extract records from a file - Haskell

///Edit
I have a problem with haskell. If someone can help me, that would be great.
I'm inserting records into a file using the following code:
check :: Int -> Int
check a
|a > 0 && a<=10 = a
|otherwise = error "oh. hmm.. enter a number from the given interval"
ame :: IO ()
ame = do
putStr "Enter the file name: "
name <- getLine
putStrLn "Do you want to add new records? "
question <- getLine
if question == "yes" then do
putStrLn "Enter your records:"
newRec <- getLine
appendFile name ('\n':newRec)
--new lines--
putStrLn "enter a number between 0 and 10: "
something <- getLine
return (read something:: Int)
let response = check something
putStrLn response
appendFile name ('\n':something)
putStrLn "enter something new again: "
something2 <- getLine
appendFile name ('\n':something2)
putStrLn "a"
else
putStr "b"
Now I want to extract some records from this file, using a specific criteria. For example, i want to extract and display records from even(or odd or any other criteria) rows. can I do that? if yes, how?
Also...
I want to check the user input. Let's say that I don't want him/her to enter a string instead of an integer. can I also check his/her input? do I need to create another function and call that function inside the code from above?
///Edit
thank you for answering. but how can i embed it into my previous code?
I've tried now to create a function(you can see the above code) and then call that function in my IO. but it doesn't work..
Yes, it is certainly possible to display only certain rows. If you want to base it off of the row number, the easiest way is to use zip and filter
type Record = String
onlyEven :: [Record] -> [Record]
onlyEven records =
map snd $ -- Drop the numbers and return the remaining records
filter (even . fst) $ -- Filter by where the number is even
zip [1..] -- All numbers
records -- Your records
This technique can be used in a lot of circumstances, you could even abstract it a bit to
filterByIdx :: Integral i => (i -> Bool) -> [a] -> [a]
filterByIdx condition xs = map snd $ filter (condition . fst) $ zip [1..] xs
-- Could also use 0-based of `zip [0..] xs`, up to you
onlyEven :: [a] -> [a]
onlyEven = filterByIdx even
If you want to check if an input is an Int, the easiest way is to use the Text.Read.readMaybe function:
import Text.Read (readMaybe)
promptUntilInt :: IO Int
promptUntilInt = do
putStr "Enter an integer: "
response <- getLine
case readMaybe response of
Just x -> return x
Nothing -> do
putStrLn "That wasn't an integer!"
promptUntilInt
This should give you an idea of how to use the function. Note that in some cases you'll have to specify the type signature manually as case (readMaybe response :: Maybe Int) of ..., but here it'll work fine because it can deduce the Int from promptUntilInt's type signature. If you get an error about how it couldn't figure out which instance for Read a to use, you need to manually specify the type.
You have
something <- getLine
return (read something:: Int)
let response = check something
putStrLn response
To step through what you're trying to do with these lines:
something <- getLine
getLine has the type IO String, meaning it performs an IO action and returns a String. You can extract that value in do notation as
something <- getLine
Just as you have above. Now something is a String that has whatever value was entered on that line. Next,
return (read something :: Int)
converts something to an Int, and then passes it to the function return. Remember, return is not special in Haskell, it's just a function that wraps a pure value in a monad. return 1 :: Maybe Int === Just 1, for example, or return 1 :: [Int] === [1]. It has contextual meaning, but it is no different from the function putStrLn. So that line just converts something to an Int, wraps it in the IO monad, then continues on to the next line without doing anything else:
let response = check something
This won't compile because check has the type Int -> Int, not String -> String. It doesn't make any sense to say "hello, world" > 0 && "hello, world" <= 10, how do you compare a String and an Int? Instead, you want to do
let response = check (read something)
But again, this is unsafe. Throwing an error on an invalid read or when read something is greater than 10 will crash your program completely, Haskell does errors differently than most languages. It's better to do something like
check :: Int -> Bool
check a = a > 0 && a <= 10
...
something <- getLine
case readMaybe something of
Nothing -> putStrLn "You didn't enter a number!"
Just a -> do
if check a
then putStrLn "You entered a valid number!"
else putStrLn "You didn't enter a valid number!"
putStrLn "This line executes next"
While this code is a bit more complex, it's also safe, it won't ever crash and it handles each case explicitly and appropriately. By the way, the use of error is usually considered bad, there are limited capabilities for Haskell to catch errors thrown by this function, but errors can be represented by data structures like Maybe and Either, which give us pure alternatives to unsafe and unpredictable exceptions.
Finally,
putStrLn response
If it was able to compile, then response would have the type Int, since that's what check returns. Then this line would have a type error because putStrLn, as the name might suggest, puts a string with a new line, it does not print Int values. For that, you can use print, which is defined as print x = putStrLn $ show x
Since this is somewhat more complex, I would make a smaller function to handle it and looping until a valid value is given, something like
prompt :: Read a => String -> String -> IO a
prompt msg failMsg = do
putStr msg
input <- getLine
case readMaybe input of
Nothing -> do
putStrLn failMsg
prompt
Just val -> return val
Then you can use it as
main = do
-- other stuff here
-- ...
-- ...
(anInt :: Int) <- prompt "Enter an integer: " "That wasn't an integer!"
-- use `anInt` now
if check anInt
then putStrLn $ "Your number multiplied by 10 is " ++ show (anInt * 10)
else putStrLn "The number must be between 1 and 10 inclusive"
You don't have to make it so generic, though. You could easily just hard code the messages and the return type like I did before with promptUntilInt.

Elegant haskell case/error handling in sequential monads

Because I oversimplified in my other question before, I would like to give a more clear example here.
How can I handle situations where I have to check for certian conditions in a sequential way without nesting multiple cases? With "sequential way" I mean getting a value (e.g. from stdin), checking this value for a certain condition and depending on the outcome getting another value and so on.
Example:
sequen :: IO String
sequen = do
a <- getLine
case a of
"hi" -> do
putStrLn "hello!"
b <- getLine
case b of
"how are you?" -> do
putStrLn "fine, thanks"
return "nice conversation"
_ -> return "error 2"
_ -> return "error 1"
I know that there are better ways to write such a chat bot, it should just demonstrate the sequential nature of the problem. As you can see, with every nested case, the code also gets indented deeper.
Is there a way to better structure such code? I'm thinking of handling the "errors" on one place and describing the "success-path" without the error handling distributed all over it.
Of course. This is precisely what EitherT was made for. You can get it from Control.Monad.Trans.Either in the eitherT package.
import Control.Monad.Trans.Class
import Control.Monad.Trans.Either
main = do
e <- runEitherT $ do
a <- lift getLine
case a of
"hi" -> lift $ putStrLn "hello!"
_ -> left 1
b <- lift getLine
case b of
"how are you?" -> lift $ putStrLn "fine, thanks!"
_ -> left 2
return "nice conversation"
case e of
Left n -> putStrLn $ "Error - Code: " ++ show n
Right str -> putStrLn $ "Success - String: " ++ str
EitherT aborts the current code block whenever it encounters a left statement, and people typically use this to indicate error conditions.
The inner block's type is EitherT Int IO String. When you runEitherT it, you get IO (Either Int String). The Left type corresponds to the case where it failed with a left and the Right value means it successfully reached the end of the block.
I wrote a series of posts a while back going over my own learnings of the Either & EitherT types. You can read it here: http://watchchrislearn.com/blog/2013/12/01/working-entirely-in-eithert/
I use the errors package to get a bunch of nice helpers around using EitherT (left and right functions for instance to return lifted versions of Left and Right).
By extracting your potential failure conditions into their own helpers, you can make the mainline of your code read totally sequentially, with no case statements checking results.
From that post, you can see how the runEitherT section is a sequential chunk of work, it just happens to have the failure mechanics of EitherT. Obviously this code is fairly contrived to show how MaybeT plays inside of EitherT as well. In real code it'd just be the story you were wanting to tell, with a single Left/Right at the end.
import Control.Error
import Control.Monad.Trans
-- A type for my example functions to pass or fail on.
data Flag = Pass | Error
main :: IO ()
main = do
putStrLn "Starting to do work:"
result <- runEitherT $ do
lift $ putStrLn "Give me the first input please:"
initialText <- lift getLine
x <- eitherFailure Error initialText
lift $ putStrLn "Give me the second input please:"
secondText <- lift getLine
y <- eitherFailure Pass (secondText ++ x)
noteT ("Failed the Maybe: " ++ y) $ maybeFailure Pass y
case result of
Left val -> putStrLn $ "Work Result: Failed\n " ++ val
Right val -> putStrLn $ "Work Result: Passed\n " ++ val
putStrLn "Ok, finished. Have a nice day"
eitherFailure :: Monad m => Flag -> String -> EitherT String m String
eitherFailure Pass val = right $ "-> Passed " ++ val
eitherFailure Error val = left $ "-> Failed " ++ val
maybeFailure :: Monad m => Flag -> String -> MaybeT m String
maybeFailure Pass val = just $ "-> Passed maybe " ++ val
maybeFailure Error _ = nothing
Since you are necessarily in the IO monad, you are better off using the IO monad's error handling capabilities instead of stacking an error monad on top of IO. It avoids all of the heavy lifting:
import Control.Monad ( unless )
import Control.Exception ( catch )
import Prelude hiding ( catch )
import System.IO.Error ( ioeGetErrorString )
main' = do
a <- getLine
unless (a == "hi") $ fail "error 1"
putStrLn "hello!"
b <- getLine
unless (b == "how are you?") $ fail "error 2"
putStrLn "fine, thanks"
return "nice conversation"
main = catch main' $ return . ioeGetErrorString
In this case, your errors are simply Strings, which are thrown by IO's fail, as a userError. If you want to throw some other type, you will need to use throwIO instead of fail.
At some point the EitherT package was deprecated (though transformers-either offers a similar API). Fortunately there's an alternative to EitherT that doesn't even require installing a separate package.
The standard Haskell installation comes with the Control.Monad.Trans.Except module (from the transformers package, which is bundled with GHC), which behaves almost identically to EitherT. The resulting code is almost identical to the code in Gabriella Gonzalez's answer, but using runExceptT instead of runEitherT and throwE instead of left.
import Control.Monad.Trans.Class
import Control.Monad.Trans.Except
main = do
e <- runExceptT $ do
a <- lift getLine
case a of
"hi" -> lift $ putStrLn "hello!"
_ -> throwE 1
b <- lift getLine
case b of
"how are you?" -> lift $ putStrLn "fine, thanks!"
_ -> throwE 2
return "nice conversation"
case e of
Left n -> putStrLn $ "Error - Code: " ++ show n
Right str -> putStrLn $ "Success - String: " ++ str
(Note that the aforementioned transformers-either package is in fact a wrapper for ExceptT designed for providing compatibility with code that still uses EitherT.)
Warning: fellow Haskell newbie answering.
You can avoid this sort of staircasing with the Maybe monad. Good example at the start of this chapter
However, you'd want something similar with a monadic Either (presumably there is one) since you're returning error codes.
The basic idea being that once you've got a "Left 1" error you'll short-circuit any future steps (because of lazy evaluation).

Haskell case statement

I have code something like this
main :: [[String]] -> IO ()
main st = do
answer <- getLine
case answer of
"q" -> return ()
"load" x -> main $ parseCSV $ readFile x
This doesn't work, so my question is how can I use case switch statement for something of changing input
For example in my code I want the input from a user to be either q or a load, but the load will constant change:
load "sample.csv"
load "test.csv"
load "helloworld.csv"
In my code I indicated the constantly changing input as X, but this doesn't work as I expected it.
Help would be appreciated, thank you.
As others have mentioned, the problem is with your pattern matching.
Here's a simple way to get around this (and still have something readable).
Split answer into words for matching (with the words function).
Use the first word in the pattern match.
If you want to use the remaining "words", simply unwords the remaining elems in the list to get a string.
Example:
main :: IO ()
main = do
answer <- getLine
case words answer of
("q":_) -> putStrLn "I'm quitting!"
("load":x) -> putStrLn ("Now I will load " ++ unwords x)
otherwise -> putStrLn "Not sure what you want me to do!"
Note - the x you had above is actually unwords x here.

Resources