Using python with OpenGL - python-3.x

I got my rotation values from OPI0 to my pc and now i want to get a object to rotate in that direction where my gyroscope is facing (degree values from 180 to -180) Im fairly new to Python.
glRotatef(1, xrot, yrot, zrot) Only sets the rotation + the current rotation.
But what i actually want to have is that if it is on 180 degrees, i want to place it to 180 degrees. This could be archieved by getting the current rotation, testing if its smaller or largen and then adjust the rotation or setting the rotation with a command to the degree value.
So my main questions are:
Is there a command to set the rotation value of the created object?
Is there a way to read the current rotation value?

Well, if you
glLoadIdentity()
before
glRotatef()
then it should always rotate to the specified degrees, instead of relatively rotating.
Depending on how and where you've setup your camera and object translation, you might have to refactor your code a bit, because of the identity (it will clear all other transformations you done before).

Related

Calculate 3D vector at 90 degree on plane

I am trying to calculate the width and height of a 3D object at different locations of this object.
I skeletonize it, then process through skan to get just the network, which allow me to calculate the longest path.
I then want to calculate the width and height of my object at each point of the network taking in consideration the next point location. As a 3D vector. Below the kind of thing I want.
Point A and B are known, and I want to get and rotate around its own axis step-wise, something like 90 degrees.
After that, I should be able to handle, by adjusting the lenght of this second vector and checking if the pixel is inside my object or not (my source image is a segmented image with square voxel).
From what I understand, I will need to use dot product or/and cross product, but I am at a loss.

Triangulate camera position and orientation in regards to known objects

I made an object tracker that calculates the position of an object recorded in a live camera feed using stereoscopic cameras. The math was simple, once you know the camera distance and orientation. However, now I thought it would be nice to allow me to quickly extract all these parameters, so when I change my setup or cameras I will be able to quickly calibrate it again.
To calculate the object position I made some simplifications/assumptions, which made the math easier: the cameras are in the same YZ plane, so there is only a distance in x between them. Their tilt is also just in the XY plane.
To reverse the triangulation I thought a test pattern (square) of 4 points of which I know the distances to each other would suffice. Ideally I would like to get the cameras' positions (distances to test pattern and each other), their rotation in X (and maybe Y and Z if applicable/possible), as well as their view angle (to translate pixel position to real world distances - that should be a camera constant, but in case I change cameras, it is quite a bit to define accurately)
I started with the same trigonometric calculations, but always miss parameters. I am wondering if there is an existing solution or a solid approach. If I need to add parameter (like distances, they are easy enough to measure), it's no problem (my calculations didn't give me any simple equations with that possibility though).
I also read about Homography in opencv, but it seems it applies to 2D space only, or not?
Any help is appreciated!

Dynamic Camera Caliberation OpenCV python3

I am planning on making a robotic arm. I have a camera mounted on the arm. I am using Opencv with python3 to do IP.
I want the arm to detect the point on the ground and the servos to move accordingly. I have completed the part of detection and calculating the world coordinates. Also, the inverse kinematics that is required.
The problem here is that I have calibrated the camera for a certain height (20 cm). So, the correct world coordinates are received at the height of 20 cm only. I want the camera to keep correcting the reading at every 2s that it moves towards the ground (downward).
Is there a way that I can do the calibration dynamically, and give dynamic coordinates to my arm? I don't know if this is the right approach. If there is another method to do this, please help.
I am assuming you are using the undistort function to first undistort the image and then using the rotational vector(rcvt) and translational vector(tvct) along with distortCoeffs to get the world coordinates. The correct coordinates are only obtained at that specific height because the rvct and tvct will change according to the square size (of the chess-board) used for calibration.
A smart way to overcome this would be to eliminate the rotational vector and translational vector easily.
Since the camera calibration constants remain the same at any height/rotation, it can be used in this. Also, rather than calibrating it every 2 seconds (which would consume too much CPU), directly use the method below to get the values!
Let's say (img_x, img_y) is the image coordinate which you need to transform to world coordinate (world_x, world_y) and cameraMatrix is your camera matrix. For this method, you need to know the distance_cam, that is, the perpendicular distance of your object from the camera.
Using python, and opencv, use the following code :
import numpy as np
from numpy.linalg import inv
img_x, img_y = 20, 30 # your image coordinates go here
world_coord = np.array([[img_x], [img_y], [1]]) # create a 3x1 matrix
world_coord = inv(cameraMatrix) * world_coord # use formula cameraMatrix^(-1)*coordinates
world_coord = world_coord * distance_cam
world_x = world_coord[0][0]
world_y = world_coord[1][1]
print(world_x, world_y)
At first, we may not realise that the units in the world coordinates don't matter. After multiplying by the inverse of the camera matrix you have defined the ratio x/z which is unitless. So, you can choose the distance_cam in any unit and the end result would be in the units of distance_cam, that is, if distance_cam was in mm, then world_x, world_y would also be in mm.

Arcade physics rotation and angularVelocity

So ... what exactly are the parameters of body.rotation and body.angularVelocity in Phaser arcade physics?
The documentation for body.rotation just says "the amount the Body is rotated", without specifying units (radians or degrees), the zero vector (X axis?), nor the direction that's positive.
Docs for body.angle says "angle in radians" ... but again doesn't say which axis is the 0 rotation vector, nor which direction is positive.
The documentation for angularVelocity says "angular velocity in pixels per second squared" which doesn't make ANY SENSE AT ALL. You can't measure rotation in pixels.
I'm trying to sync up a phaser front-end with a server-based physics model that has its own coordinate system, so some clarity on the documentation would really make my life easier!
As far as I know "body.rotation" is given in radians and if using degrees you should use "body.angle".
For the rotation direction a higher value rotates the sprite clockwise. If the angle is 0 and the sprite is pointing up it will point to the right after entering the body.angle = 90.
angularVelocity is not for rotating your sprite. The name says "angularVELOCITY" so what it's used for is to set an angular velocity. It's mainly used when you want the sprite to move in the direction it's facing.

Three.js ParticleSystem flickering with large data

Back story: I'm creating a Three.js based 3D graphing library. Similar to sigma.js, but 3D. It's called graphosaurus and the source can be found here. I'm using Three.js and using a single particle representing a single node in the graph.
This was the first task I had to deal with: given an arbitrary set of points (that each contain X,Y,Z coordinates), determine the optimal camera position (X,Y,Z) that can view all the points in the graph.
My initial solution (which we'll call Solution 1) involved calculating the bounding sphere of all the points and then scale the sphere to be a sphere of radius 5 around the point 0,0,0. Since the points will be guaranteed to always fall in that area, I can set a static position for the camera (assuming the FOV is static) and the data will always be visible. This works well, but it either requires changing the point coordinates the user specified, or duplicating all the points, neither of which are great.
My new solution (which we'll call Solution 2) involves not touching the coordinates of the inputted data, but instead just positioning the camera to match the data. I encountered a problem with this solution. For some reason, when dealing with really large data, the particles seem to flicker when positioned in front/behind of other particles.
Here are examples of both solutions. Make sure to move the graph around to see the effects:
Solution 1
Solution 2
You can see the diff for the code here
Let me know if you have any insight on how to get rid of the flickering. Thanks!
It turns out that my near value for the camera was too low and the far value was too high, resulting in "z-fighting". By narrowing these values on my dataset, the problem went away. Since my dataset is user dependent, I need to determine an algorithm to generate these values dynamically.
I noticed that in the sol#2 the flickering only occurs when the camera is moving. One possible reason can be that, when the camera position is changing rapidly, different transforms get applied to different particles. So if a camera moves from X to X + DELTAX during a time step, one set of particles get the camera transform for X while the others get the transform for X + DELTAX.
If you separate your rendering from the user interaction, that should fix the issue, assuming this is the issue. That means that you should apply the same transform to all the particles and the edges connecting them, by locking (not updating ) the transform matrix until the rendering loop is done.

Resources