Related
I am creating a MAW well and want to use it as an observation well to compare it later to field data, it should be screened over multiple layers. However, I am only getting the head value in the well of the very last timestep in my output file. Any ideas on how to get all timesteps in the output?
The FloPy manual says something about it needing to be in Output Control, but I can't figure out how to do that:
print_head (boolean) – print_head (boolean) keyword to indicate that the list of multi-aquifer well heads will be printed to the listing file for every stress period in which “HEAD PRINT” is specified in Output Control. If there is no Output Control option and PRINT_HEAD is specified, then heads are printed for the last time step of each stress period.
In the MODFLOW6 manual I see that it is possible to make a continuous output:
modflow6
My MAW definition looks like this:
maw = flopy.mf6.ModflowGwfmaw(gwf,
nmawwells=1,
packagedata=[0, Rwell, minbot, wellhead,'MEAN',OBS1welllayers],
connectiondata=OBS1connectiondata,
perioddata=[(0,'STATUS','ACTIVE')],
flowing_wells=False,
save_flows=True,
mover=True,
flow_correction=True,
budget_filerecord='OBS1wellbudget',
print_flows=True,
print_head=True,
head_filerecord='OBS1wellhead',
)
My output control looks like this:
oc = flopy.mf6.ModflowGwfoc(gwf,
budget_filerecord=budget_file,
head_filerecord=head_file,
saverecord=[('HEAD', 'ALL'), ('BUDGET', 'ALL'), ],
)
Hope this is all clear and someone can help me, thanks!
You need to initialise the MAW observations file... it's not done in the OC package.
You can find the scripts for the three MAW examples in the MF6 documentation here:
https://github.com/MODFLOW-USGS/modflow6-examples/tree/master/notebooks
It looks something like this:
obs_file = "{}.maw.obs".format(name)
csv_file = obs_file + ".csv"
obs_dict = {csv_file: [
("head", "head", (0,)),
("Q1", "maw", (0,), (0,)),
("Q2", "maw", (0,), (1,)),
("Q3", "maw", (0,), (2,)),
]}
maw.obs.initialize(filename=obs_file, digits=10, print_input=True, continuous=obs_dict)
I have two dimensional list like that
x_irp_group = [['x1_1_4', 'x1_2_4', 'x1_3_4', 'x1_4_4', 'x1_5_4', 'x1_6_4', 'x1_7_4', 'x1_8_4', 'x1_9_4', 'x1_10_4', 'x1_1_5', 'x1_2_5', 'x1_3_5', 'x1_4_5', 'x1_5_5', 'x1_6_5', 'x1_7_5', 'x1_8_5', 'x1_9_5', 'x1_10_5', 'x1_1_6', 'x1_2_6', 'x1_3_6', 'x1_4_6', 'x1_5_6', 'x1_6_6', 'x1_7_6', 'x1_8_6', 'x1_9_6', 'x1_10_6', 'x1_1_7', 'x1_2_7', 'x1_3_7', 'x1_4_7', 'x1_5_7', 'x1_6_7', 'x1_7_7', 'x1_8_7', 'x1_9_7', 'x1_10_7', 'x1_1_8', 'x1_2_8', 'x1_3_8', 'x1_4_8', 'x1_5_8', 'x1_6_8', 'x1_7_8', 'x1_8_8', 'x1_9_8', 'x1_10_8'], ['x1_1_8', 'x1_2_8', 'x1_3_8', 'x1_4_8', 'x1_5_8', 'x1_6_8', 'x1_7_8', 'x1_8_8', 'x1_9_8', 'x1_10_8', 'x1_1_9', 'x1_2_9', 'x1_3_9', 'x1_4_9', 'x1_5_9', 'x1_6_9', 'x1_7_9', 'x1_8_9', 'x1_9_9', 'x1_10_9', 'x1_1_10', 'x1_2_10', 'x1_3_10', 'x1_4_10', 'x1_5_10', 'x1_6_10', 'x1_7_10', 'x1_8_10', 'x1_9_10', 'x1_10_10', 'x1_1_11', 'x1_2_11', 'x1_3_11', 'x1_4_11', 'x1_5_11', 'x1_6_11', 'x1_7_11', 'x1_8_11', 'x1_9_11', 'x1_10_11', 'x1_1_12', 'x1_2_12', 'x1_3_12', 'x1_4_12', 'x1_5_12', 'x1_6_12', 'x1_7_12', 'x1_8_12', 'x1_9_12', 'x1_10_12']]
I wanna eliminate this two dimensional list if the elements in another one dimensional list like that
x_irp_eliminated_list = ['x1_1_4', 'x1_1_8', 'x1_1_12', 'x1_1_16', 'x1_1_19', 'x1_1_22', 'x1_1_26', 'x1_1_30', 'x1_1_34', 'x1_1_37', 'x1_1_43', 'x1_1_49', 'x1_1_55', 'x1_1_61', 'x1_1_68', 'x1_1_75', 'x1_1_81', 'x1_1_87', 'x1_1_92', 'x1_1_96', 'x1_1_101', 'x1_1_107', 'x1_1_112', 'x1_1_116', 'x1_1_121', 'x1_1_126', 'x1_1_131', 'x1_1_134', 'x1_1_137', 'x1_1_141', 'x1_1_145', 'x1_1_149', 'x1_1_152', 'x1_1_155', 'x1_1_160', 'x1_1_164', 'x1_1_169', 'x1_1_173', 'x1_1_181', 'x1_1_189', 'x1_1_197', 'x1_1_205', 'x1_2_8', 'x1_2_10', 'x1_2_13', 'x1_2_17', 'x1_2_21', 'x1_2_25', 'x1_2_28', 'x1_2_30', 'x1_2_34', 'x1_2_40', 'x1_2_45', 'x1_2_51', 'x1_2_58', 'x1_2_66', 'x1_2_71', 'x1_2_77', 'x1_2_82', 'x1_2_86', 'x1_2_91', 'x1_2_97', 'x1_2_102', 'x1_2_106', 'x1_2_111', 'x1_2_117', 'x1_2_122', 'x1_2_125', 'x1_2_129', 'x1_2_132', 'x1_2_135', 'x1_2_139', 'x1_2_143', 'x1_2_147', 'x1_2_151', 'x1_2_154', 'x1_2_157', 'x1_2_161', 'x1_2_166', 'x1_2_172', 'x1_2_177', 'x1_2_181', 'x1_2_189', 'x1_2_197', 'x1_2_205', 'x1_2_214', 'x1_3_1', 'x1_3_4', 'x1_3_8', 'x1_3_11', 'x1_3_15', 'x1_3_18', 'x1_3_22', 'x1_3_25', 'x1_3_28', 'x1_3_32', 'x1_3_35', 'x1_3_39', 'x1_3_42', 'x1_3_46', 'x1_3_49', 'x1_3_52', 'x1_3_56', 'x1_3_59', 'x1_3_63', 'x1_3_66', 'x1_3_70', 'x1_3_73', 'x1_3_77', 'x1_3_81', 'x1_3_85', 'x1_3_88', 'x1_3_91', 'x1_3_94', 'x1_3_97', 'x1_3_101', 'x1_3_105', 'x1_3_109', 'x1_3_112', 'x1_3_115', 'x1_3_118', 'x1_3_122', 'x1_3_126', 'x1_3_130', 'x1_3_134', 'x1_3_137', 'x1_3_140', 'x1_3_143', 'x1_3_147', 'x1_3_151', 'x1_3_156', 'x1_3_159', 'x1_3_163']
I write a code like that but it did not work well.
x_final = [i for i, j in zip(x_irp_group, x_irp_eliminated_list) if i == j]
I shorten the lists. Normally their sizes are much bigger than that
the list comprehension you have isn't working because you are zipping the elements together, which isn't what the operation represents (they are not parallel arrays) what you want is something along the lines of:
x_final = [i for i in x_irp_group[0] if (i not in x_irp_eliminated_list)]
Note that for a 2d list you may need to nest this like:
# writing normal loops you'd write:
# for row in x_irp_group:
# for i in row:
# if (...):
# so I typically try to indent the loops similarly since nested array comprehension
# gets complicated, honestly I'd likely prefer using generator functions for this anyway
x_final = [[i for i in row
if (i not in x_irp_eliminated_list)
]for row in x_irp_group
]
although know that i not in x_irp_eliminated_list will be very slow for a list, changing it to a set would improve performance:
x_irp_eliminated_set = set(x_irp_eliminated_list)
x_final = [i for i in x_irp_group[0] if (i not in x_irp_eliminated_set)]
Or if the lists are trivially sorted, then you could convert them both to sets, do a subtraction then sort it again:
x_final = [ sorted(set(x_irp_group[0]) - set(x_irp_eliminated_list)) ]
although if you have super giant lists this would probably be less desirable.
x_irp_eliminated_list_set = set(x_irp_eliminated_list)
x_last = [i for row in x_irp_group
for i in row
if (i in x_irp_eliminated_list_set)]
print(x_last[:30])
I used this for faster operation. Set approach made it faster. Thanks for that information. I learn one new thing. But it creates one dimensional list. I would like to create two dimensional list like original x_irp_group
I have a dataframe which is of length 177 and I want to calculate and plot the partial auto-correlation function (PACF).
I have the data imported etc and I do:
from statsmodels.tsa.stattools import pacf
ys = pacf(data[key][array].diff(1).dropna(), alpha=0.05, nlags=176, method="ywunbiased")
xs = range(lags+1)
plt.figure()
plt.scatter(xs,ys[0])
plt.grid()
plt.vlines(xs, 0, ys[0])
plt.plot(ys[1])
The method used results in numbers greater than 1 for very long lags (90ish) which is incorrect and I get a RuntimeWarning: invalid value encountered in sqrtreturn rho, np.sqrt(sigmasq) but since I can't see their source code I don't know what this means.
To be honest, when I search for PACF, all the examples only carry out PACF up to 40 lags or 60 or so and they never have any significant PACF after lag=2 and so I couldn't compare to other examples either.
But when I use:
method="ols"
# or
method="ywmle"
the numbers are corrected. So it must be the algo they use to solve it.
I tried importing inspect and getsource method but its useless it just shows that it uses another package and I can't find that.
If you also know where the problem arises from, I would really appreciate the help.
For your reference, the values for data[key][array] are:
[1131.130005, 1144.939941, 1126.209961, 1107.300049, 1120.680054, 1140.839966, 1101.719971, 1104.23999, 1114.579956, 1130.199951, 1173.819946, 1211.920044, 1181.27002, 1203.599976, 1180.589966, 1156.849976, 1191.5, 1191.329956, 1234.180054, 1220.329956, 1228.810059, 1207.01001, 1249.47998, 1248.290039, 1280.079956, 1280.660034, 1294.869995, 1310.609985, 1270.089966, 1270.199951, 1276.660034, 1303.819946, 1335.849976, 1377.939941, 1400.630005, 1418.300049, 1438.23999, 1406.819946, 1420.859985, 1482.369995, 1530.619995, 1503.349976, 1455.27002, 1473.98999, 1526.75, 1549.380005, 1481.140015, 1468.359985, 1378.550049, 1330.630005, 1322.699951, 1385.589966, 1400.380005, 1280.0, 1267.380005, 1282.829956, 1166.359985, 968.75, 896.23999, 903.25, 825.880005, 735.090027, 797.869995, 872.8099980000001, 919.1400150000001, 919.320007, 987.4799800000001, 1020.6199949999999, 1057.079956, 1036.189941, 1095.630005, 1115.099976, 1073.869995, 1104.48999, 1169.430054, 1186.689941, 1089.410034, 1030.709961, 1101.599976, 1049.329956, 1141.199951, 1183.26001, 1180.550049, 1257.640015, 1286.119995, 1327.219971, 1325.829956, 1363.609985, 1345.199951, 1320.640015, 1292.280029, 1218.890015, 1131.420044, 1253.300049, 1246.959961, 1257.599976, 1312.410034, 1365.680054, 1408.469971, 1397.910034, 1310.329956, 1362.160034, 1379.319946, 1406.579956, 1440.670044, 1412.160034, 1416.180054, 1426.189941, 1498.109985, 1514.680054, 1569.189941, 1597.569946, 1630.73999, 1606.280029, 1685.72998, 1632.969971, 1681.550049, 1756.540039, 1805.810059, 1848.359985, 1782.589966, 1859.449951, 1872.339966, 1883.949951, 1923.569946, 1960.22998, 1930.6700440000002, 2003.369995, 1972.290039, 2018.050049, 2067.560059, 2058.899902, 1994.9899899999998, 2104.5, 2067.889893, 2085.51001, 2107.389893, 2063.110107, 2103.840088, 1972.180054, 1920.030029, 2079.360107, 2080.409912, 2043.939941, 1940.2399899999998, 1932.22998, 2059.73999, 2065.300049, 2096.949951, 2098.860107, 2173.600098, 2170.949951, 2168.27002, 2126.149902, 2198.810059, 2238.830078, 2278.8701170000004, 2363.639893, 2362.719971, 2384.199951, 2411.800049, 2423.409912, 2470.300049, 2471.649902, 2519.360107, 2575.26001, 2584.840088, 2673.610107, 2823.810059, 2713.830078, 2640.8701170000004, 2648.050049, 2705.27002, 2718.3701170000004, 2816.290039, 2901.52002, 2913.97998]
Your time series is pretty clearly not stationary, so that Yule-Walker assumptions are violated.
More generally, PACF is usually appropriate with stationary time series. You might difference your data first, before considering the partial autocorrelations.
How can I convert Japanese radical characters into their "regular" kanji character counterparts?
For instance, the character for the radical fire is ⽕ (with a Unicode value of 12117)
And the regular character is 火 (with a Unicode value of 28779)
EDIT:
To clarify, the reason why I think I need this is because I would like to obtain the stroke information for each radical by using the kanjivg data set. However, (I need to look into this further), I'm not sure if kanjivg has stroke data for the radical characters, but it definitely has stroke data for the regular kanji characters.
The language that I'm working with is Java - but I assumed that conversion would be similar for any language.
Using RADKFILE for this was was a neat idea (#Paul) but I don't think it uses Kangxi radicals because it's encoded in EUC-JP and if my browser (or Github) doesn't automatically convert between Kangxi/kanji, the list only has non-Kangxi characters as long as we're talking about Unicode.
The Unicode range for Kangxi radicals is on this Wikipedia page: Unicode/Character reference/2000-2FFF (bottom).
Somebody has created a mapping between them: Kanji to Kangxi Radical remapping tables. I did not check the correctness but when you convert the code points to characters you can see if they look the same. Here's how you do it in Java: Creating Unicode character from its number
Here is the list in CSV for convenience (kanji,radical):
0x4E00,0x2F00
0x4E28,0x2F01
0x4E36,0x2F02
0x4E3F,0x2F03
0x4E59,0x2F04
0x4E85,0x2F05
0x4E8C,0x2F06
0x4EA0,0x2F07
0x4EBA,0x2F08
0x513F,0x2F09
0x5165,0x2F0A
0x516B,0x2F0B
0x5182,0x2F0C
0x5196,0x2F0D
0x51AB,0x2F0E
0x51E0,0x2F0F
0x51F5,0x2F10
0x5200,0x2F11
0x529B,0x2F12
0x52F9,0x2F13
0x5315,0x2F14
0x531A,0x2F15
0x5338,0x2F16
0x5341,0x2F17
0x535C,0x2F18
0x5369,0x2F19
0x5382,0x2F1A
0x53B6,0x2F1B
0x53C8,0x2F1C
0x53E3,0x2F1D
0x56D7,0x2F1E
0x571F,0x2F1F
0x58EB,0x2F20
0x5902,0x2F21
0x590A,0x2F22
0x5915,0x2F23
0x5927,0x2F24
0x5973,0x2F25
0x5B50,0x2F26
0x5B80,0x2F27
0x5BF8,0x2F28
0x5C0F,0x2F29
0x5C22,0x2F2A
0x5C38,0x2F2B
0x5C6E,0x2F2C
0x5C71,0x2F2D
0x5DDB,0x2F2E
0x5DE5,0x2F2F
0x5DF1,0x2F30
0x5DFE,0x2F31
0x5E72,0x2F32
0x5E7A,0x2F33
0x5E7F,0x2F34
0x5EF4,0x2F35
0x5EFE,0x2F36
0x5F0B,0x2F37
0x5F13,0x2F38
0x5F50,0x2F39
0x5F61,0x2F3A
0x5F73,0x2F3B
0x5FC3,0x2F3C
0x6208,0x2F3D
0x6236,0x2F3E
0x624B,0x2F3F
0x652F,0x2F40
0x6534,0x2F41
0x6587,0x2F42
0x6597,0x2F43
0x65A4,0x2F44
0x65B9,0x2F45
0x65E0,0x2F46
0x65E5,0x2F47
0x66F0,0x2F48
0x6708,0x2F49
0x6728,0x2F4A
0x6B20,0x2F4B
0x6B62,0x2F4C
0x6B79,0x2F4D
0x6BB3,0x2F4E
0x6BCB,0x2F4F
0x6BD4,0x2F50
0x6BDB,0x2F51
0x6C0F,0x2F52
0x6C14,0x2F53
0x6C34,0x2F54
0x706B,0x2F55
0x722A,0x2F56
0x7236,0x2F57
0x723B,0x2F58
0x723F,0x2F59
0x7247,0x2F5A
0x7259,0x2F5B
0x725B,0x2F5C
0x72AC,0x2F5D
0x7384,0x2F5E
0x7389,0x2F5F
0x74DC,0x2F60
0x74E6,0x2F61
0x7518,0x2F62
0x751F,0x2F63
0x7528,0x2F64
0x7530,0x2F65
0x758B,0x2F66
0x7592,0x2F67
0x7676,0x2F68
0x767D,0x2F69
0x76AE,0x2F6A
0x76BF,0x2F6B
0x76EE,0x2F6C
0x77DB,0x2F6D
0x77E2,0x2F6E
0x77F3,0x2F6F
0x793A,0x2F70
0x79B8,0x2F71
0x79BE,0x2F72
0x7A74,0x2F73
0x7ACB,0x2F74
0x7AF9,0x2F75
0x7C73,0x2F76
0x7CF8,0x2F77
0x7F36,0x2F78
0x7F51,0x2F79
0x7F8A,0x2F7A
0x7FBD,0x2F7B
0x8001,0x2F7C
0x800C,0x2F7D
0x8012,0x2F7E
0x8033,0x2F7F
0x807F,0x2F80
0x8089,0x2F81
0x81E3,0x2F82
0x81EA,0x2F83
0x81F3,0x2F84
0x81FC,0x2F85
0x820C,0x2F86
0x821B,0x2F87
0x821F,0x2F88
0x826E,0x2F89
0x8272,0x2F8A
0x8278,0x2F8B
0x864D,0x2F8C
0x866B,0x2F8D
0x8840,0x2F8E
0x884C,0x2F8F
0x8863,0x2F90
0x897E,0x2F91
0x898B,0x2F92
0x89D2,0x2F93
0x8A00,0x2F94
0x8C37,0x2F95
0x8C46,0x2F96
0x8C55,0x2F97
0x8C78,0x2F98
0x8C9D,0x2F99
0x8D64,0x2F9A
0x8D70,0x2F9B
0x8DB3,0x2F9C
0x8EAB,0x2F9D
0x8ECA,0x2F9E
0x8F9B,0x2F9F
0x8FB0,0x2FA0
0x8FB5,0x2FA1
0x9091,0x2FA2
0x9149,0x2FA3
0x91C6,0x2FA4
0x91CC,0x2FA5
0x91D1,0x2FA6
0x9577,0x2FA7
0x9580,0x2FA8
0x961C,0x2FA9
0x96B6,0x2FAA
0x96B9,0x2FAB
0x96E8,0x2FAC
0x9751,0x2FAD
0x975E,0x2FAE
0x9762,0x2FAF
0x9769,0x2FB0
0x97CB,0x2FB1
0x97ED,0x2FB2
0x97F3,0x2FB3
0x9801,0x2FB4
0x98A8,0x2FB5
0x98DB,0x2FB6
0x98DF,0x2FB7
0x9996,0x2FB8
0x9999,0x2FB9
0x99AC,0x2FBA
0x9AA8,0x2FBB
0x9AD8,0x2FBC
0x9ADF,0x2FBD
0x9B25,0x2FBE
0x9B2F,0x2FBF
0x9B32,0x2FC0
0x9B3C,0x2FC1
0x9B5A,0x2FC2
0x9CE5,0x2FC3
0x9E75,0x2FC4
0x9E7F,0x2FC5
0x9EA5,0x2FC6
0x9EBB,0x2FC7
0x9EC3,0x2FC8
0x9ECD,0x2FC9
0x9ED1,0x2FCA
0x9EF9,0x2FCB
0x9EFD,0x2FCC
0x9F0E,0x2FCD
0x9F13,0x2FCE
0x9F20,0x2FCF
0x9F3B,0x2FD0
0x9F4A,0x2FD1
0x9F52,0x2FD2
0x9F8D,0x2FD3
0x9F9C,0x2FD4
0x9FA0,0x2FD5
It's not entirely clear why you want this, but one possible way to do it is with Jim Breen's radkfile file that maps radicals to associated kanjis and the reverse. Combine that with some heuristics and Breen's kanjidic file (to the extent that these resources are reliable), and you can pretty easily generate a mapping. Here's an example in Python, using the cjktools library, which has Python wrappers for these things.
from cjktools.resources.radkdict import RadkDict
from cjktools.resources.kanjidic import Kanjidic
def make_rad_to_kanji_dict():
rdict = RadkDict()
kdict = Kanjidic()
# Get all the radicals where there are kanji made up entirely of the one
# radical - the ones we want are a subset of those
tmp = ((rads[0], kanji) for kanji, rads in rdict.items()
if len(rads) == 1)
# All the ones with the same number of strokes - should be all the ones that
# are homographs
out = {rad: kanji for rad, kanji in tmp
if (kanji in kdict and
kdict[kanji].stroke_count == rdict.radical_to_stroke_count[rad])}
return out
RAD_TO_KANJI_DICT = make_rad_to_kanji_dict()
if __name__ == "__main__":
print(RAD_TO_KANJI_DICT['⽕'])
You can iterate through the file it generates and output a static mapping pretty easily. There may be existing homograph lists for that sort of thing, but I don't know of any. radkdict only has 128 kanji consisting of exactly 1 radical, so it is also a simple matter to just enumerate all of those and manually check which ones match your criteria.
Note: I looked through the list of things that are caught by the "consisting of exactly one radical" heuristic but skipped over in the "has the same stroke order" list, it seems that '老' (radical) -> '老' (kanji) and '刈' (radical) -> '刈' (kanji) are the only ones that, for whatever reason, don't get caught by this. Here is a CSV generated with this method.
I'm coding a project in Matlab, however I want the great efficiency and speed of my execution, for that sake, I want to use parallel processing threads in Matlab as I have multiple objects working or changing their states in a for loop. Is Multi-Threading is appropriate for this purpose? If so, where can I take start or can create a simple thread?
My Code:
% P=501x3 array
for i=1:length(P)
% I used position for example's sake, meaning object changing its state
Object1.position=P(i,:);
Object2.position=P(i,:);
Object3.position=P(i,:);
Object4.position=P(i,:);
% Mulitple objects changing their state on each iteration, after some calculation/formulation.
end
What I need is the basic structure of Multi-Threads according to my scenario if Threading is appropriate in my case. More suggestions for Parallel-Execution or fast processing are welcomed.
Edit1: Parray:
P =
-21.8318 19.2251 -16.0000
-21.7386 19.1620 -15.9640
-21.6455 19.0988 -15.9279
-21.5527 19.0357 -15.8918
-21.4600 18.9727 -15.8556
-21.3675 18.9096 -15.8194
-21.2752 18.8466 -15.7831
-21.1831 18.7836 -15.7468
-21.0911 18.7206 -15.7105
-20.9993 18.6577 -15.6741
-20.9078 18.5947 -15.6377
-20.8163 18.5318 -15.6012
-20.7251 18.4689 -15.5647
-20.6340 18.4061 -15.5281
-20.5432 18.3432 -15.4915
-20.4524 18.2804 -15.4548
-20.3619 18.2176 -15.4181
-20.2715 18.1548 -15.3814
-20.1813 18.0921 -15.3446
-20.0913 18.0293 -15.3078
-20.0015 17.9666 -15.2709
-19.9118 17.9039 -15.2340
-19.8223 17.8412 -15.1970
-19.7329 17.7786 -15.1601
-19.6438 17.7160 -15.1230
-19.5547 17.6534 -15.0860
-19.4659 17.5908 -15.0489
-19.3772 17.5282 -15.0117
-19.2887 17.4656 -14.9745
-19.2004 17.4031 -14.9373
-19.1122 17.3406 -14.9001
-19.0241 17.2781 -14.8628
-18.9363 17.2156 -14.8254
-18.8486 17.1532 -14.7881
-18.7610 17.0907 -14.7507
-18.6736 17.0283 -14.7132
-18.5864 16.9659 -14.6758
-18.4994 16.9035 -14.6383
-18.4124 16.8412 -14.6007
-18.3257 16.7788 -14.5632
-18.2391 16.7165 -14.5255
-18.1526 16.6542 -14.4879
-18.0663 16.5919 -14.4502
-17.9802 16.5296 -14.4125
-17.8942 16.4673 -14.3748
-17.8084 16.4051 -14.3370
-17.7227 16.3429 -14.2992
-17.6372 16.2807 -14.2614
-17.5518 16.2185 -14.2235
-17.4665 16.1563 -14.1856
-17.3815 16.0941 -14.1477
-17.2965 16.0320 -14.1097
-17.2117 15.9698 -14.0718
-17.1271 15.9077 -14.0338
-17.0426 15.8456 -13.9957
-16.9582 15.7835 -13.9576
-16.8740 15.7214 -13.9196
-16.7899 15.6594 -13.8814
-16.7060 15.5973 -13.8433
-16.6222 15.5353 -13.8051
-16.5385 15.4733 -13.7669
-16.4550 15.4113 -13.7287
-16.3716 15.3493 -13.6904
-16.2884 15.2873 -13.6521
-16.2053 15.2253 -13.6138
-16.1223 15.1634 -13.5755
-16.0395 15.1014 -13.5372
-15.9568 15.0395 -13.4988
-15.8742 14.9776 -13.4604
-15.7918 14.9157 -13.4220
-15.7095 14.8538 -13.3835
-15.6273 14.7919 -13.3451
-15.5453 14.7301 -13.3066
-15.4634 14.6682 -13.2681
-15.3816 14.6063 -13.2295
-15.2999 14.5445 -13.1910
-15.2184 14.4827 -13.1524
-15.1370 14.4209 -13.1138
-15.0557 14.3591 -13.0752
-14.9746 14.2973 -13.0366
-14.8936 14.2355 -12.9979
-14.8127 14.1737 -12.9593
-14.7319 14.1120 -12.9206
-14.6513 14.0502 -12.8819
-14.5707 13.9885 -12.8432
-14.4903 13.9267 -12.8044
-14.4100 13.8650 -12.7657
-14.3299 13.8033 -12.7269
-14.2498 13.7416 -12.6881
-14.1699 13.6799 -12.6493
-14.0901 13.6182 -12.6105
-14.0104 13.5565 -12.5717
-13.9308 13.4948 -12.5328
-13.8513 13.4332 -12.4940
-13.7720 13.3715 -12.4551
-13.6927 13.3099 -12.4162
-13.6136 13.2482 -12.3773
-13.5346 13.1866 -12.3384
-13.4556 13.1250 -12.2995
-13.3768 13.0633 -12.2605
-13.2982 13.0017 -12.2216
-13.2196 12.9401 -12.1826
-13.1411 12.8785 -12.1437
-13.0627 12.8169 -12.1047
-12.9845 12.7553 -12.0657
-12.9063 12.6937 -12.0267
-12.8283 12.6321 -11.9877
-12.7503 12.5706 -11.9487
-12.6725 12.5090 -11.9097
-12.5947 12.4474 -11.8706
-12.5171 12.3859 -11.8316
-12.4395 12.3243 -11.7925
-12.3621 12.2628 -11.7535
-12.2848 12.2012 -11.7144
-12.2075 12.1397 -11.6754
-12.1304 12.0781 -11.6363
-12.0533 12.0166 -11.5972
-11.9764 11.9550 -11.5581
-11.8995 11.8935 -11.5190
-11.8228 11.8320 -11.4799
-11.7461 11.7705 -11.4408
-11.6695 11.7089 -11.4017
-11.5930 11.6474 -11.3626
-11.5166 11.5859 -11.3235
-11.4403 11.5244 -11.2844
-11.3641 11.4629 -11.2453
-11.2880 11.4014 -11.2062
-11.2120 11.3398 -11.1671
-11.1360 11.2783 -11.1280
-11.0602 11.2168 -11.0889
-10.9844 11.1553 -11.0497
-10.9087 11.0938 -11.0106
-10.8331 11.0323 -10.9715
-10.7576 10.9708 -10.9324
-10.6821 10.9093 -10.8933
-10.6068 10.8478 -10.8542
-10.5315 10.7863 -10.8150
-10.4563 10.7248 -10.7759
-10.3812 10.6633 -10.7368
-10.3062 10.6018 -10.6977
-10.2312 10.5403 -10.6586
-10.1564 10.4788 -10.6195
-10.0816 10.4173 -10.5804
-10.0068 10.3557 -10.5414
-9.9322 10.2942 -10.5023
-9.8576 10.2327 -10.4632
-9.7831 10.1712 -10.4241
-9.7087 10.1097 -10.3851
-9.6343 10.0482 -10.3460
-9.5600 9.9866 -10.3069
-9.4858 9.9251 -10.2679
-9.4117 9.8636 -10.2289
-9.3376 9.8021 -10.1898
-9.2636 9.7405 -10.1508
-9.1897 9.6790 -10.1118
-9.1158 9.6174 -10.0728
-9.0420 9.5559 -10.0338
-8.9683 9.4944 -9.9948
-8.8946 9.4328 -9.9558
-8.8210 9.3712 -9.9169
-8.7474 9.3097 -9.8779
-8.6739 9.2481 -9.8390
-8.6005 9.1865 -9.8000
-8.5272 9.1250 -9.7611
-8.4539 9.0634 -9.7222
-8.3806 9.0018 -9.6833
-8.3074 8.9402 -9.6444
-8.2343 8.8786 -9.6056
-8.1612 8.8170 -9.5667
-8.0882 8.7554 -9.5279
-8.0152 8.6938 -9.4890
-7.9423 8.6322 -9.4502
-7.8695 8.5705 -9.4114
-7.7967 8.5089 -9.3727
-7.7239 8.4473 -9.3339
-7.6513 8.3856 -9.2951
-7.5786 8.3240 -9.2564
-7.5060 8.2623 -9.2177
-7.4335 8.2006 -9.1790
-7.3610 8.1389 -9.1403
-7.2885 8.0772 -9.1017
-7.2161 8.0155 -9.0630
-7.1438 7.9538 -9.0244
-7.0715 7.8921 -8.9858
-6.9992 7.8304 -8.9472
-6.9270 7.7687 -8.9086
-6.8548 7.7069 -8.8701
-6.7827 7.6452 -8.8316
-6.7106 7.5834 -8.7931
-6.6385 7.5217 -8.7546
-6.5665 7.4599 -8.7161
-6.4945 7.3981 -8.6777
-6.4226 7.3363 -8.6393
-6.3507 7.2745 -8.6009
-6.2788 7.2127 -8.5625
-6.2070 7.1508 -8.5242
-6.1352 7.0890 -8.4858
-6.0635 7.0271 -8.4475
-5.9917 6.9653 -8.4093
-5.9200 6.9034 -8.3710
-5.8484 6.8415 -8.3328
-5.7768 6.7796 -8.2946
-5.7052 6.7177 -8.2564
-5.6336 6.6558 -8.2183
-5.5621 6.5938 -8.1802
-5.4906 6.5319 -8.1421
-5.4191 6.4699 -8.1040
-5.3476 6.4079 -8.0660
-5.2762 6.3459 -8.0280
-5.2048 6.2839 -7.9900
-5.1334 6.2219 -7.9521
-5.0621 6.1599 -7.9142
-4.9908 6.0978 -7.8763
-4.9194 6.0358 -7.8384
-4.8482 5.9737 -7.8006
-4.7769 5.9116 -7.7628
-4.7057 5.8495 -7.7250
-4.6344 5.7874 -7.6873
-4.5632 5.7253 -7.6496
-4.4920 5.6631 -7.6119
-4.4209 5.6010 -7.5743
-4.3497 5.5388 -7.5367
-4.2786 5.4766 -7.4992
-4.2074 5.4144 -7.4616
-4.1363 5.3522 -7.4241
-4.0652 5.2899 -7.3867
-3.9941 5.2277 -7.3492
-3.9231 5.1654 -7.3118
-3.8520 5.1031 -7.2745
-3.7809 5.0408 -7.2372
-3.7099 4.9785 -7.1999
-3.6389 4.9161 -7.1626
-3.5678 4.8538 -7.1254
-3.4968 4.7914 -7.0883
-3.4258 4.7290 -7.0511
-3.3548 4.6666 -7.0140
-3.2838 4.6041 -6.9770
-3.2128 4.5417 -6.9400
-3.1418 4.4792 -6.9030
-3.0708 4.4167 -6.8661
-2.9998 4.3542 -6.8292
-2.9288 4.2917 -6.7923
-2.8578 4.2291 -6.7555
-2.7868 4.1666 -6.7187
-2.7158 4.1040 -6.6820
-2.6448 4.0414 -6.6453
-2.5738 3.9788 -6.6087
-2.5028 3.9161 -6.5720
-2.4318 3.8534 -6.5355
-2.3608 3.7908 -6.4990
-2.2897 3.7280 -6.4625
-2.2187 3.6653 -6.4261
-2.1477 3.6026 -6.3897
-2.0766 3.5398 -6.3534
-2.0056 3.4770 -6.3171
-1.9345 3.4142 -6.2808
-1.8634 3.3513 -6.2446
-1.7924 3.2885 -6.2085
-1.7213 3.2256 -6.1724
-1.6501 3.1627 -6.1363
-1.5790 3.0998 -6.1003
-1.5079 3.0368 -6.0643
-1.4367 2.9739 -6.0284
-1.3656 2.9109 -5.9925
-1.2944 2.8478 -5.9567
-1.2232 2.7848 -5.9210
-1.1519 2.7217 -5.8852
-1.0807 2.6586 -5.8496
-1.0094 2.5955 -5.8140
-0.9381 2.5324 -5.7784
-0.8668 2.4692 -5.7429
-0.7955 2.4060 -5.7074
-0.7242 2.3428 -5.6720
-0.6528 2.2796 -5.6366
-0.5814 2.2163 -5.6013
-0.5100 2.1530 -5.5661
-0.4385 2.0897 -5.5309
-0.3670 2.0264 -5.4957
-0.2955 1.9630 -5.4607
-0.2240 1.8996 -5.4256
-0.1524 1.8362 -5.3906
-0.0808 1.7727 -5.3557
-0.0092 1.7093 -5.3209
0.0625 1.6458 -5.2860
0.1341 1.5822 -5.2513
0.2059 1.5187 -5.2166
0.2776 1.4551 -5.1819
0.3494 1.3915 -5.1474
0.4212 1.3279 -5.1128
0.4931 1.2642 -5.0784
0.5650 1.2005 -5.0440
0.6369 1.1368 -5.0096
0.7089 1.0730 -4.9753
0.7809 1.0092 -4.9411
0.8530 0.9454 -4.9069
0.9251 0.8816 -4.8728
0.9972 0.8177 -4.8388
1.0694 0.7538 -4.8048
1.1416 0.6899 -4.7709
1.2139 0.6260 -4.7370
1.2862 0.5620 -4.7032
1.3585 0.4980 -4.6695
1.4309 0.4339 -4.6358
1.5034 0.3698 -4.6022
1.5759 0.3057 -4.5686
1.6484 0.2416 -4.5352
1.7210 0.1774 -4.5017
1.7936 0.1132 -4.4684
1.8663 0.0490 -4.4351
1.9391 -0.0153 -4.4019
2.0119 -0.0796 -4.3687
2.0847 -0.1439 -4.3356
2.1576 -0.2083 -4.3026
2.2306 -0.2726 -4.2697
2.3036 -0.3371 -4.2368
2.3767 -0.4015 -4.2040
2.4498 -0.4660 -4.1712
2.5230 -0.5305 -4.1385
2.5962 -0.5951 -4.1059
2.6695 -0.6597 -4.0734
2.7429 -0.7243 -4.0409
2.8163 -0.7890 -4.0085
2.8898 -0.8537 -3.9762
2.9634 -0.9184 -3.9439
3.0370 -0.9831 -3.9117
3.1106 -1.0479 -3.8796
3.1844 -1.1128 -3.8476
3.2582 -1.1776 -3.8156
3.3320 -1.2425 -3.7837
3.4060 -1.3075 -3.7519
3.4800 -1.3724 -3.7201
3.5541 -1.4374 -3.6884
3.6282 -1.5025 -3.6568
3.7024 -1.5675 -3.6253
3.7767 -1.6327 -3.5939
3.8510 -1.6978 -3.5625
3.9255 -1.7630 -3.5312
4.0000 -1.8282 -3.4999
4.0745 -1.8935 -3.4688
4.1492 -1.9588 -3.4377
4.2239 -2.0241 -3.4067
4.2987 -2.0895 -3.3758
4.3736 -2.1549 -3.3450
4.4485 -2.2203 -3.3142
4.5236 -2.2858 -3.2835
4.5987 -2.3513 -3.2529
4.6739 -2.4169 -3.2224
4.7491 -2.4825 -3.1920
4.8245 -2.5481 -3.1616
4.8999 -2.6138 -3.1313
4.9755 -2.6795 -3.1011
5.0511 -2.7453 -3.0710
5.1267 -2.8111 -3.0409
5.2025 -2.8769 -3.0110
5.2784 -2.9428 -2.9811
5.3543 -3.0087 -2.9513
5.4303 -3.0747 -2.9216
5.5065 -3.1407 -2.8920
5.5827 -3.2067 -2.8624
5.6590 -3.2728 -2.8330
5.7354 -3.3389 -2.8036
5.8118 -3.4051 -2.7743
5.8884 -3.4713 -2.7451
5.9651 -3.5375 -2.7160
6.0418 -3.6038 -2.6870
6.1187 -3.6701 -2.6580
6.1957 -3.7365 -2.6292
6.2727 -3.8029 -2.6004
6.3498 -3.8693 -2.5717
6.4271 -3.9358 -2.5431
6.5044 -4.0024 -2.5146
6.5819 -4.0690 -2.4862
6.6594 -4.1356 -2.4579
6.7370 -4.2023 -2.4296
6.8148 -4.2690 -2.4015
6.8926 -4.3357 -2.3734
6.9706 -4.4025 -2.3455
7.0486 -4.4694 -2.3176
7.1268 -4.5362 -2.2898
7.2050 -4.6032 -2.2621
7.2834 -4.6702 -2.2345
7.3619 -4.7372 -2.2070
7.4405 -4.8042 -2.1796
7.5191 -4.8713 -2.1523
7.5979 -4.9385 -2.1250
7.6769 -5.0057 -2.0979
7.7559 -5.0730 -2.0709
7.8350 -5.1402 -2.0439
7.9142 -5.2076 -2.0171
7.9936 -5.2750 -1.9903
8.0731 -5.3424 -1.9637
8.1526 -5.4099 -1.9371
8.2323 -5.4774 -1.9106
8.3122 -5.5450 -1.8842
8.3921 -5.6126 -1.8580
8.4721 -5.6803 -1.8318
8.5523 -5.7480 -1.8057
8.6326 -5.8157 -1.7797
8.7130 -5.8835 -1.7539
8.7935 -5.9514 -1.7281
8.8742 -6.0193 -1.7024
8.9549 -6.0873 -1.6768
9.0358 -6.1553 -1.6513
9.1169 -6.2233 -1.6260
9.1980 -6.2914 -1.6007
9.2793 -6.3596 -1.5755
9.3607 -6.4278 -1.5504
9.4422 -6.4960 -1.5254
9.5238 -6.5643 -1.5006
9.6056 -6.6327 -1.4758
9.6875 -6.7011 -1.4511
9.7695 -6.7695 -1.4266
9.8517 -6.8380 -1.4021
9.9340 -6.9066 -1.3778
10.0164 -6.9752 -1.3535
10.0990 -7.0438 -1.3294
10.1817 -7.1125 -1.3053
10.2645 -7.1813 -1.2814
10.3475 -7.2501 -1.2576
10.4306 -7.3189 -1.2338
10.5138 -7.3878 -1.2102
10.5972 -7.4568 -1.1867
10.6807 -7.5258 -1.1633
10.7644 -7.5949 -1.1400
10.8482 -7.6640 -1.1168
10.9321 -7.7332 -1.0938
11.0162 -7.8024 -1.0708
11.1004 -7.8717 -1.0479
11.1848 -7.9410 -1.0252
11.2693 -8.0104 -1.0026
11.3539 -8.0798 -0.9800
11.4387 -8.1493 -0.9576
11.5237 -8.2188 -0.9353
11.6087 -8.2884 -0.9131
11.6940 -8.3581 -0.8910
11.7794 -8.4278 -0.8691
11.8649 -8.4976 -0.8472
11.9506 -8.5674 -0.8255
12.0364 -8.6373 -0.8038
12.1224 -8.7072 -0.7823
12.2085 -8.7772 -0.7609
12.2948 -8.8472 -0.7396
12.3813 -8.9173 -0.7185
12.4679 -8.9875 -0.6974
12.5546 -9.0577 -0.6765
12.6415 -9.1279 -0.6557
12.7286 -9.1983 -0.6350
12.8158 -9.2686 -0.6144
12.9032 -9.3391 -0.5939
12.9907 -9.4096 -0.5735
13.0784 -9.4801 -0.5533
13.1663 -9.5507 -0.5332
13.2543 -9.6214 -0.5132
13.3425 -9.6921 -0.4933
13.4309 -9.7629 -0.4735
13.5194 -9.8337 -0.4539
13.6080 -9.9046 -0.4344
13.6969 -9.9756 -0.4150
13.7859 -10.0466 -0.3957
13.8751 -10.1177 -0.3765
13.9644 -10.1888 -0.3575
14.0539 -10.2600 -0.3386
14.1436 -10.3313 -0.3198
14.2334 -10.4026 -0.3011
14.3235 -10.4740 -0.2826
14.4137 -10.5454 -0.2641
14.5040 -10.6169 -0.2458
14.5946 -10.6884 -0.2277
14.6853 -10.7600 -0.2096
14.7761 -10.8317 -0.1917
14.8672 -10.9035 -0.1739
14.9584 -10.9753 -0.1562
15.0499 -11.0471 -0.1387
15.1414 -11.1190 -0.1213
15.2332 -11.1910 -0.1040
15.3252 -11.2631 -0.0868
15.4173 -11.3352 -0.0697
15.5096 -11.4073 -0.0528
15.6021 -11.4796 -0.0360
15.6948 -11.5519 -0.0194
15.7876 -11.6242 -0.0029
15.8806 -11.6966 0.0135
15.9739 -11.7691 0.0298
16.0673 -11.8417 0.0459
16.1609 -11.9143 0.0619
16.2547 -11.9869 0.0778
16.3486 -12.0597 0.0936
16.4428 -12.1325 0.1092
16.5371 -12.2053 0.1247
16.6317 -12.2783 0.1400
16.7264 -12.3513 0.1552
16.8213 -12.4243 0.1703
16.9164 -12.4974 0.1853
17.0117 -12.5706 0.2001
17.1072 -12.6439 0.2148
17.2029 -12.7172 0.2293
17.2988 -12.7906 0.2437
17.3949 -12.8640 0.2580
17.4911 -12.9376 0.2721
17.5876 -13.0111 0.2861
17.6843 -13.0848 0.3000
Ahsan,
I think parfor might be what you're looking for. It requires the Parallel Computing Toolbox (PCT) to use. It works like this:
parfor i = 1:length(P)
Object1.position = P(i,:);
end
Also, I would recommend using indexed structure fields, as I've done in the example below, as it increases the flexibility of any code that you write. Let me know if this doesn't work for you, and we'll try something else. I know another technique, but it's much messier. Good luck!
parfor i = 1:length(P)
Object(i).position = P(i,:);
end
Edit: Ok, this may not work because parfor is pretty particular. But it the general concept should apply to the problem you're trying to solve. I can't be more specific without knowing more about your specific problem. The key point is, inside a parfor, you must iterate something (Object, below) by the parfors iterator (i, below) and assign that thing a value. I'm not sure if you can use a for-loop inside a parfor, so the first example below may break. The point is, this is how you do parallel processing in MATLAB. Try this:
parfor i = 1:4
Object(i).position = P(i,:);
end
Edit 2:
parfor i = length(P)
Object1 = struct();
Object1.position = P(i, :);
end
Edit 3: Ok, one last thing. You can't use "sliced" structs (structs with fields) as input or output from a parfor so you have to do this:
parfor i = 1:length(P)
positionArray1(i) = P(i, :);
end
Object1 = struct('position', positionArray1);